Previous |  Up |  Next

Article

Keywords:
ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters
Summary:
We consider the spaces called $Seq(u_t)$, constructed on the set $Seq$ of all finite sequences of natural numbers using ultrafilters $u_t$ to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that $S(u_t)$ is homogeneous if and only if all the ultrafilters $u_t$ have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to $Seq(p)$ (i.e., $u_t = p$ for all $t\in Seq$). It follows that for a Ramsey ultrafilter $p$, $Seq(p)$ is a topological group.
References:
[1] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces. Michigan Math. J. 15 (1968), 313-320. MR 0240767
[2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters. Springer-Verlag, New York, 1974. MR 0396267 | Zbl 0298.02004
[3] van Douwen E.K.: Countable homogeneous spaces and countable groups. in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, 1986, Z. Frolík (ed.); Heldermann Verlag, Berlin, 1988, pp. 135-154. MR 0952601 | Zbl 0648.54016
[4] Dow A., Gubbi A.V., Szymanski A.: Rigid Stone spaces within ZFC. Proc. Amer. Math. Soc. 102 (1988), 745-748. MR 0929014
[5] Dow A., Vaughan J.E.: Accessible and biaccessible points in contrasequential spaces. Annals of the New York Academy of Sciences, Vol 704 (1993) 92-102. MR 1277846 | Zbl 0814.54017
[6] El'kin A.G.: Some topologies on an infinite set. Uspekhi Mat. Nauk 35:3 (1980), 179-183; English transl.: Russian Mat. Surveys 35:3 (1980) 225-230. MR 0580644 | Zbl 0461.54030
[7] Jech T.: Set Theory. Academic Press, New York, 1978. MR 0506523 | Zbl 1007.03002
[8] Kannan V., Rajagopalan M.: Constructions and applications of rigid spaces. Advances in Mathematics 29 (1978), 89-130. MR 0501093 | Zbl 0424.54029
[9] Kato A.: A new construction of extremally disconnected topologies. Topology Appl. 58 (1994), 1-16. MR 1280706 | Zbl 0804.54030
[10] Levy R.: Countable spaces without points of first countability. Pacific J. Math. 70 (1977), 391-399. MR 0482613 | Zbl 0343.54005
[11] Lindgren W.F., Szymanski A.A.: A non-pseudocompact product of countably compact spaces via Seq. Proc. Amer. Math. Soc. 125 (1997), 3741-3746. MR 1415350 | Zbl 0891.54010
[12] Louveau A.: Sur un article de S. Sirota. Bull. Sc. Math., 2e série 96 (1972), 3-7. MR 0308326 | Zbl 0228.54032
[13] van Mill J.: An introduction to $\betaømega$. Handbook of Set-theoretic Topology, K. Kunen, J. Vaughan, Eds., North-Holland, Amsterdam, 1984. MR 0776630
[14] Shelah S., Rudin M.E.: Unordered types of ultrafilters. Topology Proc. 3 (1978), 199-204. MR 0540490
[15] Sirota S.M.: The product of topological groups and extremally disconnectedness. Mat. Sbornik 79 (121) (1969), 2 169-18. MR 0242988
[16] Szymanski A.: Products and measurable cardinals. Rend. Circ. Mat. Palermo (2) Suppl. No. 11, (1985), 105-112 (1987). MR 0897976 | Zbl 0635.54010
[17] Trnková V.: Homeomorphisms of products of countable spaces. Proc. Amer. Math. Soc. (1982). MR 0682479
[18] Trnková V.: Homeomorphisms of products of Boolean algebras. Fund. Math 126 (1985), 46-61. MR 0817079
Partner of
EuDML logo