Previous |  Up |  Next

Article

Keywords:
Čech-complete spaces; Lindelöf spaces; tri-quotient maps
Summary:
For a topological space $X$ let $\Cal K (X)$ be the set of all compact subsets of $X$. The purpose of this paper is to characterize Lindelöf Čech-complete spaces $X$ by means of the sets $\Cal K (X)$. Similar characterizations also hold for Lindelöf locally compact $X$, as well as for countably $K$-determined spaces $X$. Our results extend a classical result of J. Christensen.
References:
[1] Bouziad A., Calbrix J.: Čech-complete spaces and the upper topology. Topology Appl. 70 (1996), 133-138. MR 1397071 | Zbl 0860.54002
[2] Christensen J.P.R.: Topology and Borel Structure. North-Holland, Amsterdam, 1974. MR 0348724 | Zbl 0273.28001
[3] Choban M., Chaber J., Nagami K.: On monotone generalizations of Moore spaces, Čech-complete spaces and p-spaces. Fund. Math. 84 (1974), 107-119. MR 0343244
[4] Jayne J., Rogers C.: Analytic Sets. Academic Press, London, 1980. Zbl 0589.54047
[5] Michael E.: $\aleph_0$-spaces. J. Mathematics and Mechanics 15.6 (1966), 983 -1002.
[6] Michael E.: Bi-quotient maps and cartesian products of quotient maps. Ann. Inst. Fourier, Grenoble 18 (1968), 2 287-302. MR 0244964 | Zbl 0175.19704
[7] Michael E.: A quintuple quotient quest. General Topology and Appl. 2 (1972), 91-138. MR 0309045 | Zbl 0238.54009
[8] Michael E.: Complete spaces and tri-quotient maps. Illinois J. Math. 21 (1977), 716-733. MR 0467688 | Zbl 0386.54007
[9] Nagami K.: $\Sigma$-spaces. Fund. Math. 65 (1969), 169-192. MR 0257963 | Zbl 0181.50701
[10] Saint Raymond J.: Caratérisations d'espaces polonais. Sém. Choquet (Initiation Anal.) 5 (1971-1973), 10.
[11] Valov V.: Bounded function spaces with the compact open topology. Bull. Acad. Polish Sci. 45.2 (1997), 171-179. MR 1466842
[12] Valov V.: Spaces of bounded functions. Houston J. Math. 25.3 (1999), 501-521. MR 1730884 | Zbl 0968.46019
Partner of
EuDML logo