[1] Bogovskii M.E.:
Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev 80(1) 5-40 (1980).
MR 0631691
[2] Borchers W., Sohr H.:
On the equation $rot v = g$ and $div u = f$ with zero boundary conditions. Hokkaido Math. J. 19 67-87 (1990).
MR 1039466
[3] DiPerna R.J., Lions P.-L.:
Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 511-547 (1989).
MR 1022305 |
Zbl 0696.34049
[4] Feireisl E., Matušů-Nečasová Š., Petzeltová H., Straškraba I.:
On the motion of a viscous compressible flow driven by a time-periodic external flow. Arch. Rational Mech. Anal. 149 69-96 (1999).
MR 1723036
[5] Feireisl E., Petzeltová H.:
On compactness of solutions to the Navier-Stokes equations of compressible flow. J. Differential Equations 163(1) 57-75 (2000).
MR 1755068
[6] Feireisl E., Petzeltová H.:
On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differential Equations 25(3-4) 755-767 (2000).
MR 1748351
[7] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I. Springer-Verlag, New York, 1994.
[8] Jiang S., Zhang P.:
On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. preprint, 1999.
MR 1810944 |
Zbl 0980.35126
[9] Lions P.-L.:
Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models. Oxford Science Publication, Oxford, 1998.
MR 1637634
[10] Lions P.-L.:
Bornes sur la densité pour les équations de Navier-Stokes compressible isentropiques avec conditions aux limites de Dirichlet. C.R. Acad. Sci. Paris, Sér I. 328 659-662 (1999).
MR 1680813
[11] Yi Z.:
An $L^p$ theorem for compensated compactness. Proc. Royal Soc. Edinburgh 122A (1992), 177-189.
MR 1190238 |
Zbl 0848.32025