Previous |  Up |  Next

Article

Keywords:
weak* measurable function; copy of $c_0$; copy of $\ell_1$
Summary:
If $(\Omega,\Sigma,\mu)$ is a finite measure space and $X$ a Banach space, in this note we show that $L_{w^{\ast}}^{1}(\mu,X^{\ast})$, the Banach space of all classes of weak* equivalent $X^{\ast}$-valued weak* measurable functions $f$ defined on $\Omega$ such that $\|f(\omega )\| \leq g(\omega )$ a.e. for some $g\in L_{1}(\mu )$ equipped with its usual norm, contains a copy of $c_{0}$ if and only if $X^{\ast}$ contains a copy of $c_{0}$.
References:
[1] Bourgain J.: An averaging result for $c_{0}$-sequences. Bull. Soc. Math. Belg. 30 (1978), 83-87. MR 0549653 | Zbl 0417.46019
[2] Cembranos P., Mendoza J.: Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676, Springer, 1997. MR 1489231 | Zbl 0902.46017
[3] Diestel J.: Sequences and Series in Banach Spaces. GTM 92, Springer-Verlag, 1984. MR 0737004
[4] Dunford N., Schwartz J.T.: Linear Operators. Part I. John Wiley, Wiley Interscience, New York, 1988. MR 1009162 | Zbl 0635.47001
[5] Hoffmann-Jørgensen J.: Sums of independent Banach space valued random variables. Studia Math. 52 (1974), 159-186. MR 0356155
[6] Hu Z., Lin B.-L.: Extremal structure of the unit ball of $L^p(\mu,X)$. J. Math. Anal. Appl. 200 (1996), 567-590. MR 1393102
[7] Kwapień S.: On Banach spaces containing $c_{0}$. Studia Math. 52 (1974), 187-188. MR 0356156
[8] Mendoza J.: Complemented copies of $\ell_{1}$ in $L_p(\mu,X)$. Math. Proc. Camb. Phil. Soc. 111 (1992), 531-534. MR 1151329
[9] Saab E., Saab P.: A stability property of a class of Banach spaces not containing a complemented copy of $\ell_{1}$. Proc. Amer. Math. Soc. 84 (1982), 44-46. MR 0633274
Partner of
EuDML logo