Previous |  Up |  Next

Article

Keywords:
$C^{\infty}$-Hopf-algebras; algebras of smooth functions on compact Lie groups; duality theorem
Summary:
A $C^{\infty}$-Hopf algebra is a $C^{\infty}$-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those $C^{\infty}$-Hopf algebras which are given by the algebra $C^{\infty}(G)$ of smooth functions on some compact Lie group $G$, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.
References:
[1] Abe E.: Hopf Algebras. Cambridge University Press, Cambridge, 1980. MR 0594432 | Zbl 0476.16008
[2] Bourbaki N.: Groupes et algèbres de Lie. Hermann, Paris, 1972. MR 0573068 | Zbl 1123.22005
[3] Cooper J.B., Michor P.: Duality of compactological and locally compact groups. Proc. Conf. Categorical Topology Mannheim 1975, Springer Lecture Notes 540, 1976. MR 0507225
[4] Frölicher A., Kriegl A.: Linear Spaces and Differentiation Theory. J. Wiley, Chichester, 1988. MR 0961256
[5] Hochschild G.: The Structure of Lie Groups. Holden-Day, 1965. MR 0207883 | Zbl 0131.02702
[6] Jarchow H.: Locally Convex Spaces. Teubner, Stuttgart, 1981. MR 0632257 | Zbl 0466.46001
[7] Kainz G., Kriegl A., Michor P.: $C^{\infty}$-algebras from the functional analytic view. J. of Pure and Applied Algebra 46 (1987), 89-107. MR 0894394
[8] Kriegl A., Michor P.W.: The convenient setting of global analysis. Mathematical Surveys and Monographs, Vol. 53, Amer. Math. Soc., 1997. MR 1471480 | Zbl 0889.58001
[9] Kriegl A., Michor P.W., Schachermayer W.: Characters on algebras of smooth functions. Ann. Global Anal. Geom. 7 ,2 (1989), 85-92. MR 1032327 | Zbl 0691.58020
[10] Michor P.W., Vanžura J.: Characterizing algebras of smooth functions on manifolds. Comment. Math. Univ. Carolinae 37 ,3 (1996), 519-521. MR 1426917
[11] Milnor J.W., Stasheff J.D.: Characteristic classes. Ann. of Math. Stud., Princeton Univ. Press, Princeton, 1974. MR 0440554 | Zbl 1079.57504
[12] Moerdijk I., Reyes G.E.: Models for Smooth Infinitesimal Analysis. Springer, Berlin/Heidelberg/New-York, 1991. MR 1083355 | Zbl 0715.18001
[13] Takahashi S.: A characterization of group rings as a special class of Hopf algebras. Canad. Math. Bull. 8 ,4 (1965), 465-75. MR 0184988 | Zbl 0143.26705
[14] Tannaka T.: Dualität der nicht-kommutativen bikompakten Gruppen. Tohoku Math. J. 53 (1938), 1-12.
[15] Yosida K.: Functional Analysis. Springer, Berlin/Heidelberg/New-York, 1980. MR 0617913 | Zbl 0830.46001
Partner of
EuDML logo