Article
Keywords:
$B$-system; $E$-system
Summary:
By a dynamical system $(X,T)$ we mean the action of the semigroup $(\Bbb Z^+,+)$ on a metrizable topological space $X$ induced by a continuous selfmap $T:X\rightarrow X$. Let $M(X)$ denote the set of all compatible metrics on the space $X$. Our main objective is to show that a selfmap $T$ of a compact space $X$ is a Banach contraction relative to some $d_1\in M(X)$ if and only if there exists some $d_2\in M(X)$ which, regarded as a $1$-cocycle of the system $(X,T)\times (X,T)$, is a coboundary.
References:
[1] Edelstein M.:
On fixed and periodic points under contractive mappings. J. London Math. Soc. 37 (1962), 74-79.
MR 0133102 |
Zbl 0113.16503
[2] Huissi M.:
Sur les solutions globales de l'equation des cocycles. Aequationes Math. 45 (1993), 195-206.
MR 1212385
[3] Iwanik A.:
Ergodicity for piecewise smooth cocycles over toral rotations. Fund. Math. 157 (1998), 235-244.
MR 1636890
[4] Janoš L.:
A converse of Banach's contraction theorem. Proc. Amer. Math. Soc. 18 (1967), 287-289.
MR 0208589 |
Zbl 0148.43001
[5] Janoš L., Ko H.M., Tau K.K.:
Edelstein's contractivity and attractors. Proc. Amer. Math. Soc. 76 (1979), 339-344.
MR 0537101
[6] Meyers P.R.:
A converse to Banach's contraction theorem. J. Res. Nat. Bureau of Standard 71B (1967), 73-76.
MR 0221469 |
Zbl 0161.19803
[7] Moore C., Schmidt K.:
Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson. Proc. London Math. Soc. 40 (1980), 443-475.
MR 0572015
[8] Nussbaum R.:
Some asymptotic fixed point theorem. Trans. Amer. Math. Soc. 171 (1972), 349-375.
MR 0310719
[9] Opoitsev V.J.:
A converse to the principle of contracting maps. Russian Math. Surveys 31 (1976), 175-204.
Zbl 0351.54025
[10] Parry W., Tuncel S.:
Classification Problems in Ergodic Theory. London Math. Soc. Lecture Note Series 67, Cambridge University Press, Cambridge, 1982.
MR 0666871 |
Zbl 0487.28014
[12] Volný D.:
Coboundaries over irrational rotations. Studia Math. 126 (1997), 253-271.
MR 1475922