Previous |  Up |  Next

Article

Keywords:
lattice of partitions; almost containedness; tower number; splitting number; reaping number; Cohen's forcing
Summary:
We study cardinal coefficients related to combinatorial properties of partitions of $\omega$ with respect to the order of almost containedness.
References:
[1] Carlson T.J., Simpson S.G.: A dual form of Ramsey's theorem. Adv. Math. 53 (1984), 265-290. MR 0753869 | Zbl 0564.05005
[2] Cichoń J., Majcher B., Wȩglorz B.: Dualizations of van Douwen Diagram. Acta Univ. Carolinae Math. et Phys. 33 (1992), 27-29. MR 1287221
[3] Cichoń J., Krawczyk A., Majcher-Iwanow B., Wȩglorz B., HASH(0x91c83d0): Dualization of van Douwen Diagram. to appear in J. Symb. Logic. MR 1771096
[4] van Dowen E.K.: The Integers and Topology. Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan, eds) North-Holland, Amsterdam, 1984, pp.111-167. MR 0776619
[5] Halbeisen L.: On shattering, splitting and reaping partitions. Math. Logic Quarterly 44 (1998), 123-134. MR 1601919 | Zbl 0896.03036
[6] Kamburelis A., Wȩglorz B.: Splittings. Arch. Math. Logic 35 (1996), 263-277. MR 1390805
[7] Kunen K.: Set Theory. An Introduction to Independence Proofs. North-Holland, Amsterdam, 1980. MR 0597342 | Zbl 0534.03026
[8] Majcher B.: Orthogonal partitions. Acta Univ. Carolinae Math. et Phys. 31 (1990), 59-63. MR 1101416 | Zbl 0794.03064
[9] Majcher-Iwanow B.: Cardinal invariants of the lattice of partitions and some related lattices. PhD Thesis, Wrocław, 1997.
[10] Matet P.: Partitions and filters. J. Symb. Logic 51 (1986), 12-21. MR 0830067 | Zbl 0588.04011
[11] Spinas O.: Partition numbers. Ann. Pure and Appl. Logic 90 (1997), 243-262. MR 1489310 | Zbl 0891.03019
[12] Shelah S.: Proper Forcing. Springer-Verlag, NY, 1982. MR 0675955 | Zbl 0819.03042
[13] Vaughan J.: Small Uncountable Cardinals and Topology. Open Problems in Topology (J. van Mill and G. Reed, eds), North-Holland, Amsterdam, 1990, pp.195-218. MR 1078647
Partner of
EuDML logo