[1] Baston R.J.:
Almost Hermitean Symmetric Manifolds I. Local twistor theory. Duke Math. J. 63 1 (1991).
MR 1106939
[2] Baston R.J.:
Almost Hermitean Symmetric manifolds II. Differential invariants. Duke Math. J. . 63 1 (1991).
MR 1106940
[3] Baston R.J., Eastwood M.G.:
The Penrose Transform - its Interaction with Representation Theory. Oxford University Press, New York, 1989.
MR 1038279 |
Zbl 0726.58004
[4] Bernstein I.N., Gelfand I.M., Gelfand S.I.:
Structure of representations generated by vectors of highest weight. Funct. Anal. Appl. 5 (1971), 1-8.
MR 0291204
[6] Branson T.:
Spectra of self-gradients on spheres, preprint, University of Iowa, August 1998.
MR 1718236
[7] Branson T., Olafsson G., Ørsted B.:
Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup. J. Funct. Anal. 135 (1996), 163-205.
MR 1367629
[8] Bureš J.:
Special invariant operators I. ESI preprint 192 (1995).
MR 1396170
[9] Čap A., Slovák J., Souček V.: Invariant operators with almost hermitean symmetric structures, III. Standard operators. to be published.
[10] Čap A., Slovák J., Souček V.: Bernstein-Gelfand-Gelfand sequences. to be published.
[11] Delanghe R., Souček V.:
On the structure of spinor-valued differential forms. Complex Variables 18 (1992), 223-236.
MR 1157930
[12] Eastwood M.G.: On the weights of conformally invariant operators. Twistor Newsl. 24 (1987), 20-23.
[13] Eastwood M.G.:
Notes on conformal differential geometry. Proc. of Winter School, Srní, in Suppl. Rend. Circ. Mat. di Palermo, ser. II, 43 (1996), 57-76.
MR 1463509 |
Zbl 0911.53020
[14] Fegan H.D.:
Conformally invariant first order differential operators. Quart. J. Math. 27 (1976), 371-378.
MR 0482879 |
Zbl 0334.58016
[16] Fulton W., Harris J.:
Representation theory. Graduate texts in Mathematics 129, Springer-Verlag, 1991.
MR 1153249 |
Zbl 0744.22001
[17] Jakobsen H.P.:
Conformal invariants. Publ. RIMS, Kyoto Univ. 22 (1986), 345-361.
MR 0849262
[18] Jakobsen H.P., Vergne M.:
Wave and Dirac operators and representations of conformal group. J. Funct. Anal. 24 (1977), 52-106.
MR 0439995
[20] Knapp A.:
Representation theory of semisimple groups, an overview based on examples. Princeton Mathematical Series 36, 1985.
MR 0855239 |
Zbl 0993.22001
[21] Slovák J.:
Natural operators on conformal manifolds. Dissertation Thesis, Brno, 1993.
MR 1255551
[22] Souček V.: Conformal invariance of higher spin equations. in Proc. of Symp. `Analytical and Numerical Methods in Clifford Analysis', Lecture in Seifen, 1996.
[23] Souček V.:
Monogenic forms and the BGG resolution. preprint, Prague, 1998.
MR 1845957
[24] Varadarajan V.S.:
Harmonic Analysis on Semisimple Lie Groups. Cambridge University Press, 1986.
Zbl 0924.22014
[25] Verma D.N.:
Structure of certain induced representations of complex semisimple Lie algebras. Bull. Amer. Math. Soc. 74 (1968), 160-166.
MR 0218417 |
Zbl 0157.07604
[26] Wünsch V.:
On conformally invariant differential operators. Math. Nachr. 129 (1986), 269-281.
MR 0864639