Article
Keywords:
multifunction; Hausdorff distance; convex processes; covering dimension; differential inclusion
Summary:
In this paper we shall establish a result concerning the covering dimension of a set of the type $\{x\in X:\Phi (x)\cap \Psi (x)\neq \emptyset \}$, where $\Phi $, $\Psi $ are two multifunctions from $X$ into $Y$ and $X$, $Y$ are real Banach spaces. Moreover, some applications to the differential inclusions will be given.
References:
[1] Aubin J.P., Cellina A.:
Differential Inclusion. Springer Verlag, 1984.
MR 0755330
[2] Cubiotti P.:
Some remarks on fixed points of lower semicontinous multifunction. J. Math. Anal. Appl. (1993), 174 407-412.
MR 1215621
[3] Dzedzej Z., Gelman B.D.:
Dimension of the solution set for differential inclusions. Demonstratio Math. (1993), 26 1 149-158.
MR 1226553 |
Zbl 0783.34008
[5] Gel'man P.D.: On topological dimension of a set of solution of functional inclusions. Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis, Torun, (1998), 2 163-178.
[7] Naselli Ricceri O.:
Classical solutions of the problem $x'\in F(t,x,x')$, $x(t_0)=x_0$, $x'(t_0)=y_0$, in Banach spaces. Funkcial. Ekvac. (1991), 34 1 127-141.
MR 1116885
[8] Ricceri B.:
Remarks on multifunctions with convex graph. Arch. Math. (1989), 52 519-520.
MR 0998626 |
Zbl 0648.46010
[9] Ricceri B.:
On the topological dimension of the solution set of a class of nonlinear equations. C.R. Acad. Sci. Paris, Série I (1997), 325 65-70.
MR 1461399 |
Zbl 0884.47043
[10] Ricceri B.:
Covering dimension and nonlinear equations. RIMS, Kyoto, Surikai sekikenkyusho-Kokyuroku (1998), 1031 97-100.
MR 1662663 |
Zbl 0940.47049