Article
Keywords:
Banach lattices; positive operators; spectral radius
Summary:
Let $f$ be a non-zero positive vector of a Banach lattice $L$, and let $T$ be a positive linear operator on $L$ with the spectral radius $r(T)$. We find some groups of assumptions on $L$, $T$ and $f$ under which the inequalities $$ \sup \{c \geq 0 : T f \geq c \, f\} \leq r(T) \leq \inf \{c \geq 0 : T f \leq c \, f\} $$ hold. An application of our results gives simple upper and lower bounds for the spectral radius of a product of positive operators in terms of positive eigenvectors corresponding to the spectral radii of given operators. We thus extend the matrix result obtained by Johnson and Bru which was the motivation for this paper.
References:
[2] Förster K.-H., Nagy B.:
On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator. Linear Algebra Appl. 120 193-205 (1989).
MR 1010057
[3] Förster K.-H., Nagy B.:
On the local spectral radius of a nonnegative element with respect to an irreducible operator. Acta Sci. Math. 55 155-166 (1991).
MR 1124954
[4] Grobler J.J.:
A note on the theorems of Jentzsch-Perron and Frobenius. Indagationes Math. 49 381-391 (1987).
MR 0922442 |
Zbl 0634.47034
[5] Johnson C.R., Bru R.:
The spectral radius of a product of nonnegative matrices. Linear Algebra Appl. 141 227-240 (1990).
MR 1076115 |
Zbl 0712.15013
[6] Marek I., Varga R.S.:
Nested bounds for the spectral radius. Numer. Math. 14 49-70 (1969).
MR 0257779 |
Zbl 0221.65063
[7] Marek I.:
Frobenius theory of positive operators: Comparison theorems and applications. SIAM J. Appl. Math. 19 607-628 (1970).
MR 0415405 |
Zbl 0219.47022
[8] Marek I.:
Collatz-Wielandt numbers in general partially ordered spaces. Linear Algebra Appl. 173 165-180 (1992).
MR 1170509 |
Zbl 0777.47003
[9] Schaefer H.H.:
Banach lattices and positive operators. (Grundlehren Math. Wiss. Bd. 215), Springer-Verlag, New York, 1974.
MR 0423039 |
Zbl 0296.47023
[10] Schaefer H.H.:
A minimax theorem for irreducible compact operators in $L^p$-spaces. Israel J. Math. 48 196-204 (1984).
MR 0770701