Article
Keywords:
quasigroup; Latin square; Markov chain; doubly stochastic matrix; ergodic; superergodic; dripping faucet; group isotope; central quasigroup; semicentral quasigroup; $T$-quasigroup; left linear quasigroup
Summary:
A pointed quasigroup is said to be semicentral if it is principally isotopic to a group via a permutation on one side and a group automorphism on the other. Convex combinations of permutation matrices given by the one-sided multiplications in a semicentral quasigroup then yield doubly stochastic transition matrices of finite Markov chains in which the entropic behaviour at any time is independent of the initial state.
References:
Belyavskaja G.B., Tabarov A.H.:
The nuclei and center of linear quasigroups (in Russian). Izv. Akad. Nauk Respub. Moldova Mat. 3 (1991), 37-42.
MR 1174875
Belyavskaja G.B., Tabarov A.H.:
One-sided T-quasigroups and irreducible balanced identities. Quasigroups Related Systems 1 (1994), 8-21.
MR 1327942
Chein O., Pflugfelder H.O., Smith J.D.H. (eds.):
Quasigroups and Loops: Theory and Applications. Heldermann Berlin (1990).
MR 1125806 |
Zbl 0719.20036
Feller W.:
An Introduction to Probability Theory and its Applications, Volume I. Wiley New York, NY (1950).
MR 0038583
Horibe Y.:
On the increase of conditional entropy in Markov chains. in ``Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Volume A'', Academia, Prague, 1988, pp.391-396.
MR 1136296 |
Zbl 0707.60059
Ježek J., Kepka T.:
Quasigroups, isotopic to a group. Comment. Math. Univ. Carolinae 16 (1975), 59-76.
MR 0367103
Němec P., Kepka T.:
T-quasigroups I, II. Acta Univ. Carolinae - Math. et Phys. 12 (1971), 1 39-49 and no. 2, 31-49.
MR 0320206