[1] Bannai E., Ito T.:
Algebraic Combinatorics I. Benjamin-Cummings Lecture Notes Series No. 58, Menlo Park, California, 1994.
MR 0882540 |
Zbl 0685.05030
[2] Bannai E., Song S.:
The character tables of Paige's simple Moufang loops and their relationship to the character tables of PSL$(2,q)$. Proc. London Math. Soc. (3) 58 (1989), 209-236.
MR 0977475 |
Zbl 0682.20050
[3] Bannai E., Kawanaka N., Song S.:
The character table of the Hecke algebra ${\Cal H}({GL}_{2n}(F_ q),{Sp}_ {2n} (F_ q))$. J. Algebra 129 (1990), 320-366.
MR 1040942
[4] Bannai E., Hao S., Song S.:
Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points. J. Combin. Theory Ser. A 54 (1990), 164-200.
MR 1059994 |
Zbl 0762.20005
[5] Brauer R.:
Representations of finite groups. in Lectures in Modern Mathematics, Vol. 1, T.L. Saaty (ed.), Wiley, 1963, pp.133-175.
MR 0178056 |
Zbl 0333.20008
[6] Cameron P.J., Kiyota M.:
Sharp characters of finite groups. J. Algebra 115 (1988), 125-143.
MR 0937604 |
Zbl 0651.20010
[8] Formanek E., Sibley D.:
The group determinant determines the group. Proc. Amer. Math. Soc 112 (1991), 649-656.
MR 1062831 |
Zbl 0742.20008
[9] Frobenius G.: Über Gruppencharaktere. Sitzungsber. Preuss. Akad. Wiss. Berlin (1896), 985-1021. (Gesammelte Abhandlungen, (Springer-Verlag 1968), pp.1-37).
[10] Johnson K.W.:
Latin square determinants. in Algebraic, Extremal and Metric Combinatorics 1986, London Math. Soc. Lecture Notes 131, 1988, pp.146-154.
MR 1052664 |
Zbl 0761.05019
[11] Johnson K.W.:
Some historical aspects of the development of group representation theory and its extension to quasigroups. Universal Algebra and Quasigroup Theory, A. Romanowska, J.D.H. Smith (eds.) Heldermann Verlag, Berlin, 1992, pp.101-117.
MR 1191229
[14] Johnson K.W.:
The Dedekind-Frobenius group determinant, new life in an old method. Proceedings of the Groups 97 Conference, Bath, England 1997; London Math. Soc. Lecture Notes 261, 1999, pp.417-428.
MR 1676638
[15] Johnson K.W., Ford D.:
Determinants of latin squares of order $8$. Experimental Math. 5 (1996), 317-325.
MR 1437221 |
Zbl 0876.05017
[16] Johnson K.W., Mattarei S., Sehgal S.K.:
Weak Cayley tables. to appear in J. London Math. Soc.
Zbl 0962.20003
[17] Johnson K.W., Poimenidou E.:
Generalised classes in groups and association schemes, duals of results on characters and sharpness. European J. Combin. 20 (1999), 1-6.
MR 1669612 |
Zbl 0916.05075
[18] Johnson K.W., Smith J.D.H.:
Characters of finite quasigroups. European J. Combin. 5 (1984), 43-50.
MR 0746044 |
Zbl 0537.20042
[19] Johnson K.W., Smith J.D.H.:
Characters of finite quasigroups II: induced characters. European J. Combin. 7 (1986), 131-138.
MR 0856325 |
Zbl 0599.20110
[20] Johnson K.W., Smith J.D.H.:
Characters of finite quasigroups III, Quotients and fusion. European J. Combin. 10 (1989), 47-56.
MR 0977179 |
Zbl 0667.20053
[21] Johnson K.W., Smith J.D.H.:
Characters of finite quasigroups IV: products and superschemes. European J. Combin. 10 (1989), 257-263.
MR 1029172 |
Zbl 0669.20053
[22] Johnson K.W., Smith J.D.H.:
Characters of finite quasigroups V: linear characters. European J. Combin. 10 (1989), 449-456.
MR 1014553 |
Zbl 0679.20059
[23] Johnson K.W., Smith J.D.H.:
A note on the induction of characters in association schemes. European J. Combin. 7 (1986), 139-140.
MR 0856326
[24] Johnson K.W., Song S-Y., Smith J.D.H.:
Characters of finite quasigroups VI: critical examples. European J. Combin. 11 (1990), 267-275.
MR 1059557 |
Zbl 0704.20056
[25] Mackey G.W.:
Harmonic analysis as an exploitation of symmetry - a historical survey. Bull. Amer. Math. Soc. 3 (1980), 543-698.
MR 0571370
[26] Smith J.D.H.:
Combinatorial characters of quasigroups. in Coding Theory and Design Theory, Part I: Coding Theory, (D. Ray-Chaudhuri, ed.) Springer, New York, 1990.
MR 1047879 |
Zbl 0708.20021
[27] Smith J.D.H.: Quasigroup actions: Markov chains, pseudoinverses, and linear transformations. to appear in South-East Asian Bulletin of Mathematics.
[28] Smith J.D.H.:
Quasigroup representation theory. Universal Algebra and Quasigroup Theory. A. Romanowska, J.D.H. Smith (eds.), Heldermann, Berlin, 1992, pp.195-207.
MR 1191234
[29] Song S-Y.:
Fusion relations in products of association schemes. preprint.
MR 1939083