Previous |  Up |  Next

Article

Keywords:
loop; character; association scheme
Summary:
A survey of the basic results of loop characters is given on the lines of the treatment of the author and J.D.H. Smith for characters of quasigroups, including some recent deveploments. One of the successes of the theory has been its suggestive influence on the theory of association schemes, group representations and the theory of the group determinant, and selected results arising are described. A section is devoted to an explanation of how the tool of loop characters has not yet been as startlingly successful as that of the early theory of group characters. This may be because in the loop case more is needed than characters and some suggestions are put forward in this direction.
References:
[1] Bannai E., Ito T.: Algebraic Combinatorics I. Benjamin-Cummings Lecture Notes Series No. 58, Menlo Park, California, 1994. MR 0882540 | Zbl 0685.05030
[2] Bannai E., Song S.: The character tables of Paige's simple Moufang loops and their relationship to the character tables of PSL$(2,q)$. Proc. London Math. Soc. (3) 58 (1989), 209-236. MR 0977475 | Zbl 0682.20050
[3] Bannai E., Kawanaka N., Song S.: The character table of the Hecke algebra ${\Cal H}({GL}_{2n}(F_ q),{Sp}_ {2n} (F_ q))$. J. Algebra 129 (1990), 320-366. MR 1040942
[4] Bannai E., Hao S., Song S.: Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points. J. Combin. Theory Ser. A 54 (1990), 164-200. MR 1059994 | Zbl 0762.20005
[5] Brauer R.: Representations of finite groups. in Lectures in Modern Mathematics, Vol. 1, T.L. Saaty (ed.), Wiley, 1963, pp.133-175. MR 0178056 | Zbl 0333.20008
[6] Cameron P.J., Kiyota M.: Sharp characters of finite groups. J. Algebra 115 (1988), 125-143. MR 0937604 | Zbl 0651.20010
[7] Godsil C.D.: Algebraic Combinatorics. Chapman & Hall, New York, 1993. MR 1220704 | Zbl 0814.05075
[8] Formanek E., Sibley D.: The group determinant determines the group. Proc. Amer. Math. Soc 112 (1991), 649-656. MR 1062831 | Zbl 0742.20008
[9] Frobenius G.: Über Gruppencharaktere. Sitzungsber. Preuss. Akad. Wiss. Berlin (1896), 985-1021. (Gesammelte Abhandlungen, (Springer-Verlag 1968), pp.1-37).
[10] Johnson K.W.: Latin square determinants. in Algebraic, Extremal and Metric Combinatorics 1986, London Math. Soc. Lecture Notes 131, 1988, pp.146-154. MR 1052664 | Zbl 0761.05019
[11] Johnson K.W.: Some historical aspects of the development of group representation theory and its extension to quasigroups. Universal Algebra and Quasigroup Theory, A. Romanowska, J.D.H. Smith (eds.) Heldermann Verlag, Berlin, 1992, pp.101-117. MR 1191229
[12] Johnson K.W.: Latin square determinants II. Discrete Math. 105 (1992), 111-130. MR 1180197 | Zbl 0761.05019
[13] Johnson K.W.: Sharp characters of quasigroups. European J. Combin. 14 (1993), 103-112. MR 1206615 | Zbl 0773.20030
[14] Johnson K.W.: The Dedekind-Frobenius group determinant, new life in an old method. Proceedings of the Groups 97 Conference, Bath, England 1997; London Math. Soc. Lecture Notes 261, 1999, pp.417-428. MR 1676638
[15] Johnson K.W., Ford D.: Determinants of latin squares of order $8$. Experimental Math. 5 (1996), 317-325. MR 1437221 | Zbl 0876.05017
[16] Johnson K.W., Mattarei S., Sehgal S.K.: Weak Cayley tables. to appear in J. London Math. Soc. Zbl 0962.20003
[17] Johnson K.W., Poimenidou E.: Generalised classes in groups and association schemes, duals of results on characters and sharpness. European J. Combin. 20 (1999), 1-6. MR 1669612 | Zbl 0916.05075
[18] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups. European J. Combin. 5 (1984), 43-50. MR 0746044 | Zbl 0537.20042
[19] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups II: induced characters. European J. Combin. 7 (1986), 131-138. MR 0856325 | Zbl 0599.20110
[20] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups III, Quotients and fusion. European J. Combin. 10 (1989), 47-56. MR 0977179 | Zbl 0667.20053
[21] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups IV: products and superschemes. European J. Combin. 10 (1989), 257-263. MR 1029172 | Zbl 0669.20053
[22] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups V: linear characters. European J. Combin. 10 (1989), 449-456. MR 1014553 | Zbl 0679.20059
[23] Johnson K.W., Smith J.D.H.: A note on the induction of characters in association schemes. European J. Combin. 7 (1986), 139-140. MR 0856326
[24] Johnson K.W., Song S-Y., Smith J.D.H.: Characters of finite quasigroups VI: critical examples. European J. Combin. 11 (1990), 267-275. MR 1059557 | Zbl 0704.20056
[25] Mackey G.W.: Harmonic analysis as an exploitation of symmetry - a historical survey. Bull. Amer. Math. Soc. 3 (1980), 543-698. MR 0571370
[26] Smith J.D.H.: Combinatorial characters of quasigroups. in Coding Theory and Design Theory, Part I: Coding Theory, (D. Ray-Chaudhuri, ed.) Springer, New York, 1990. MR 1047879 | Zbl 0708.20021
[27] Smith J.D.H.: Quasigroup actions: Markov chains, pseudoinverses, and linear transformations. to appear in South-East Asian Bulletin of Mathematics.
[28] Smith J.D.H.: Quasigroup representation theory. Universal Algebra and Quasigroup Theory. A. Romanowska, J.D.H. Smith (eds.), Heldermann, Berlin, 1992, pp.195-207. MR 1191234
[29] Song S-Y.: Fusion relations in products of association schemes. preprint. MR 1939083
Partner of
EuDML logo