Article
Keywords:
A-loop; central nilpotency; Osborn problem
Summary:
Let $Q$ be a diassociative A-loop which is centrally nilpotent of class 2 and which is not a group. Then the factor over the centre cannot be an elementary abelian 2-group.
References:
[1] Aschbacher M.:
Sporadic Groups. Cambridge Tracts in Mathematics 104, Cambridge University Press, 1994.
MR 1269103 |
Zbl 0804.20011
[2] Bruck R.H.:
Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245-354.
MR 0017288 |
Zbl 0061.02201
[3] Bruck R.H., Paige L.J.:
Loops whose inner mappings are automorphisms. Ann. of Math. 63 (1954), 308-323.
MR 0076779
[4] Chein O., Goodaire E.G.:
Moufang loops with a unique non-identity commutator (associator, square). J. Algebra 130 (1990), 369-384.
MR 1051308