Article
Keywords:
Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel
Summary:
We exhibit a class of bounded, strongly convex Hartogs domains with real-analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.
References:
[B1] Boas H.P.:
Counterexample to the Lu Qi-Keng conjecture. Proc. Amer. Math. Soc. 97 (1986), 374-375.
MR 0835902 |
Zbl 0596.32032
[B2] Boas H.P.:
The Lu Qi-Keng conjecture fails generically. Proc. Amer. Math. Soc. 124 (1996), 2021-2027.
MR 1317032 |
Zbl 0857.32010
[BFS] Boas H.P., Fu S., Straube E.:
The Bergman kernel function: explicit formulas and zeroes. Proc. Amer. Math. Soc. 127 (1999), 805-811.
MR 1469401 |
Zbl 0919.32013
[E1] Engliš M.:
Asymptotic behaviour of reproducing kernels of weighted Bergman spaces. Trans. Amer. Math. Soc. 349 (1997), 3717-3735.
MR 1401769
[E2] Engliš M.:
A Forelli-Rudin construction and asymptotics of weighted Bergman kernels. preprint, 1998.
MR 1795632
[Lig] Ligocka E.:
On the Forelli-Rudin construction and weighted Bergman projections. Studia Math. 94 (1989), 257-272.
MR 1019793 |
Zbl 0688.32020
[Lu] Lu Q.-K. (K.H. Look):
On Kaehler manifolds with constant curvature. Chinese Math. 8 (1966), 283-298.
MR 0206990
[OPY] Oeljeklaus K., Pflug P., Youssfi E.H.:
The Bergman kernel of the minimal ball and applications. Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928.
MR 1465791 |
Zbl 0873.32025
[PY] Pflug P., Youssfi E.H.:
The Lu Qi-Keng conjecture fails for strongly convex algebraic domains. Arch. Math. 71 (1998), 240-245.
MR 1637386 |
Zbl 0911.32037
[Skw] Skwarczynski M.:
Biholomorphic invariants related to the Bergman function. Dissertationes Math. 173 (1980).
MR 0575756 |
Zbl 0443.32014