Previous |  Up |  Next

Article

Keywords:
Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel
Summary:
We exhibit a class of bounded, strongly convex Hartogs domains with real-analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.
References:
[B1] Boas H.P.: Counterexample to the Lu Qi-Keng conjecture. Proc. Amer. Math. Soc. 97 (1986), 374-375. MR 0835902 | Zbl 0596.32032
[B2] Boas H.P.: The Lu Qi-Keng conjecture fails generically. Proc. Amer. Math. Soc. 124 (1996), 2021-2027. MR 1317032 | Zbl 0857.32010
[BFS] Boas H.P., Fu S., Straube E.: The Bergman kernel function: explicit formulas and zeroes. Proc. Amer. Math. Soc. 127 (1999), 805-811. MR 1469401 | Zbl 0919.32013
[E1] Engliš M.: Asymptotic behaviour of reproducing kernels of weighted Bergman spaces. Trans. Amer. Math. Soc. 349 (1997), 3717-3735. MR 1401769
[E2] Engliš M.: A Forelli-Rudin construction and asymptotics of weighted Bergman kernels. preprint, 1998. MR 1795632
[Lig] Ligocka E.: On the Forelli-Rudin construction and weighted Bergman projections. Studia Math. 94 (1989), 257-272. MR 1019793 | Zbl 0688.32020
[Lu] Lu Q.-K. (K.H. Look): On Kaehler manifolds with constant curvature. Chinese Math. 8 (1966), 283-298. MR 0206990
[OPY] Oeljeklaus K., Pflug P., Youssfi E.H.: The Bergman kernel of the minimal ball and applications. Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928. MR 1465791 | Zbl 0873.32025
[PY] Pflug P., Youssfi E.H.: The Lu Qi-Keng conjecture fails for strongly convex algebraic domains. Arch. Math. 71 (1998), 240-245. MR 1637386 | Zbl 0911.32037
[Skw] Skwarczynski M.: Biholomorphic invariants related to the Bergman function. Dissertationes Math. 173 (1980). MR 0575756 | Zbl 0443.32014
Partner of
EuDML logo