Article
Keywords:
set-valued mapping; usco mapping; extension of maps; selection
Summary:
Several classes of hereditarily normal spaces are characterized in terms of extending upper semi-continuous compact-valued mappings. The case of controlled extensions is considered as well. Applications are obtained for real-valued semi-continuous functions.
References:
[1] Choban M.: Set-valued mappings and Borel sets (in Russian). Trudy MMO 23 (1970), 277-301.
[2] Choban M., Nedev S.:
Factorization theorems for set-valued mappings, set-valued sections and topological dimension (in Russian). Mat. Balkanica 4 (1974), 457-460.
MR 0388328
[3] Gutev V.:
Open mappings looking like projections. Set-Valued Analysis 1 (1993), 247-260.
MR 1249265 |
Zbl 0818.54011
[4] Gutev V.:
Trivial bundles of spaces of probability measures and countable-dimensionality. Studia Math. 114 (1995), 1-11.
MR 1330213 |
Zbl 0826.46021
[5] Gutev V.:
Generic extensions of finite-valued u.s.c. selections. Topology Appl., to appear.
MR 1780900 |
Zbl 0998.54012
[6] Katětov M.:
On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91.
MR 0050264
[7] Katětov M.:
Correction to ``On real-valued functions in topological spaces''. Fund. Math. 40 (1953), 203-205.
MR 0060211 |
Zbl 0053.12304
[8] Katětov M.:
On the extension of locally finite coverings (in Russian). Colloq. Math. 6 (1958), 145-151.
MR 0103450
[9] Michael E.:
Continuous selection I. Ann. Math. 63 (1956), 361-382.
MR 0077107
[10] Michael E.:
A theorem on semi-continuous set-valued functions. Duke Math. J. 26 (1959), 359-376.
MR 0109343 |
Zbl 0151.30805
[11] Nedev S.:
Selection and factorization theorems for set-valued mappings. Serdica 6 (1980), 291-317.
MR 0644284 |
Zbl 0492.54006
[12] Przymusiński T.C., Wage M.:
Collectionwise normality and extensions of locally finite coverings. Fund. Math. 109 (1980), 175-187.
MR 0597065
[13] Tong H.:
Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289-292.
MR 0050265 |
Zbl 0046.16203
[14] Urysohn P.:
Über die Mächtigkeit der zusammenhängenden Mengen. Math. Ann. 94 (1925), 262-295.
MR 1512258