[1] Arhangel'skii A.V.:
Topological function spaces. Moskov. Gos. Univ. Publ., Moscow, 1989 (in Russian); English translation in: Mathematics and its Applications (Soviet Series) 78, Kluwer Academic Publishers Group, Dordrecht, 1992.
MR 1144519
[2] Arhangel'skii A.V.:
$C_p$-theory. Recent Progress in General Topology, M. Hušek and J. van Mill Eds., Elsevier Sci. Pub. B.V., 1992, pp.1-56.
Zbl 0932.54015
[3] Arhangel'skii A.V., Ponomarev V.I.:
Foundations of General Topology: Problems and Exercises. Moscow, Nauka Publ., 1974 (in Russian); English translation in: Mathematics and its applications, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster 13 (1984).
MR 0785749
[4] Asanov M.O.: On cardinal invariants of the spaces of all continuous functions (in Russian). Contemporary Topology and Set Theory, Izhevsk 2 (1979), 8-12.
[5] Berner A.J.:
Spaces with dense conditionally compact subsets. Proc. Amer. Mat. Soc. 81 (1979), 137-142.
MR 0589156
[6] Beshimov R.B.: Weakly separable spaces and mappings. Thesis, Moscow State University, 1994.
[7] Beshimov R.B.:
Some properties of weakly separable spaces Uzbek. Mat. Zh. 1 (1994), 7-11.
MR 1350283
[8] Bonanzinga M.:
Star-Lindelöf and absolutely star-Lindelöf spaces. Questions Answers Gen. Topology 16 (1998), 79-104.
MR 1642032 |
Zbl 0931.54019
[9] van Douwen E.K.:
Density of compactifications. Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.97-110.
MR 0442887 |
Zbl 0379.54006
[10] van Douwen E.K.:
The Pixley-Roy topology on spaces of subsets. Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.111-134.
MR 0440489 |
Zbl 0372.54006
[11] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.:
Star covering properties. Topology Appl. 39 (1991), 71-103.
MR 1103993 |
Zbl 0743.54007
[12] Dow A., Junnila H., Pelant J.:
Weak covering properties of weak topologies. Proc. London Math. Soc. (3) 75 (1997), 2 349-368.
MR 1455860 |
Zbl 0886.54014
[15] Ikenaga S.: A class which contains Lindelöf spaces, separable spaces and countably compact spaces. Mem. of Numazu College of Tech. 18 (1983), 105-108.
[16] Ikenaga S.: Topological concept between Lindelöf and Pseudo-Lindelöf. Res. Rep. of Nara Nat. College of Technology 26 (1990), 103-108.
[17] Levy R., McDowell R.H.:
Dense subsets of $\beta X$. Proc. Amer. Mat. Soc. 507 (1975), 426-429.
MR 0370506 |
Zbl 0313.54025
[18] Matveev M.V.: Pseudocompact and related spaces. Thesis, Moscow State University, 1985.
[20] Matveev M.V., Uspenskii V.V.:
On star-compact spaces with a $G_{\delta}$-diagonal. Zbornik Radova Filosofskogo Fakulteta v Nisu, Ser. Mat. 6:2 (1992), 281-290.
MR 1244780 |
Zbl 0911.54020
[21] Miller A.W.:
Special subsets of the real line. Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.201-233.
MR 0776624 |
Zbl 0588.54035
[22] Pixley C., Roy P.:
Uncompletable Moore spaces. Proceedings of the Auburn Topology Conference, Auburn Univ., Auburn, Alabama, 1969, pp.75-85.
MR 0397671 |
Zbl 0259.54022
[23] Pol R.:
A theorem on weak topology on $C(X)$ for compact scattered $X$. Fund. Math. 106 2 (1980), 135-140.
MR 0580591
[24] Przymusiński T., Tall F.D.:
The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition. Fund. Math 85 (1974), 291-297.
MR 0367934
[25] Reznichenko E.A.:
A pseudocompact space in which only the sets of full cardinality are not closed and not discrete. Vestnik MGU, Ser. I: Matem., Mekh., 1989, No. 6, pp.69-70 (in Russian); English translation in: Moscow Univ. Math. Bull. 44 (1989) 70-71.
MR 1065983
[26] Scott B.M.:
Pseudocompact, metacompact spaces are compact. Topology Proc. 4 (1979), 577-587.
MR 0598295
[27] Tall F.D.:
Normality versus collectionwise normality. Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.685-732.
MR 0776634 |
Zbl 0552.54011