Article
Keywords:
Banach-Saks property; arithmetic means; limit points; subsequences; permutations of sequences
Summary:
We shall prove the following statements: Given a sequence $\{a_n\}_{n=1}^{\infty}$ in a Banach space $\bold X$ enjoying the weak Banach-Saks property, there is a subsequence (or a permutation) $\{b_n\}_{n=1}^{\infty}$ of the sequence $\{a_n\}_{n=1}^{\infty}$ such that $$ \lim_{n\to\infty} {1\over n}\sum_{j=1}^n b_j=a $$ whenever $a$ belongs to the closed convex hull of the set of weak limit points of $\{a_n\}_{n=1}^{\infty}$. In case $\bold X$ has the Banach-Saks property and $\{a_n\}_{n=1}^{\infty}$ is bounded the converse assertion holds too. A characterization of reflexive spaces in terms of limit points and cores of bounded sequences is also given. The motivation for the problems investigated goes back to Lévy laplacian from potential theory in Hilbert spaces.
References:
[2] Conway J.B.:
A Course in Functional Analysis. 2-nd ed., Springer-Verlag, New York/Berlin, 1990.
MR 1070713 |
Zbl 0706.46003
[3] Diestel J.:
Geometry of Banach Spaces - Selected Topics. Springer-Verlag, New York/Berlin, 1975.
MR 0461094 |
Zbl 0466.46021
[4] Diestel J.:
Sequences and Series in Banach Spaces. Springer-Verlag, New York/Berlin, 1984.
MR 0737004
[5] Erdös P., Magidor M.:
A note on regular methods of summability and the Banach-Saks property. Proc. Amer. Math. Soc. 59 (1976), 232-234.
MR 0430596
[6] Figiel T., Sucheston L.:
An application of Ramsey sets in analysis. Adv. Math. 20 (1976), 103-105.
MR 0417757 |
Zbl 0325.46029
[8] Lévy P.:
Lecons d'analyse fonctionnelle. Gauthier-Villars, Paris, 1922.
Zbl 0043.32302