[1] Bérard Bergery L.:
Les espaces homogènes riemanniens de dimension $4$. in Géométrie riemannienne en dimension $4$ (Séminaire A.Besse) Cedic, Paris (1981), pp.40-60.
MR 0769130
[2] Calvaruso G., Vanhecke L.:
Special ball-homogeneous spaces. Z. Anal. Anwendungen 16 (1997), 789-800.
MR 1615680 |
Zbl 0892.53023
[3] Calvaruso G., Vanhecke L.:
Ball-homogeneous spaces. Proc. Workshop on Recent Topics in Differential Geometry, Santiago de Compostela (1997).
Zbl 0892.53023
[4] Ishihara S.:
Homogeneous Riemannian spaces of four dimensions. J. Math. Soc. Japan 7 (1955), 345-370.
MR 0082717 |
Zbl 0067.39602
[5] Jensen G.R.:
Homogeneous Einstein spaces of dimension four. J. Differential Geom. 3 (1969), 309-349.
MR 0261487 |
Zbl 0194.53203
[6] Kiyota Y.: Singer invariants of Riemannian homogeneous spaces. Master Thesis, Ochanomizu University (in Japanese) (1998).
[7] Kowalski O.:
A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolinae 30 (1989), 85-88.
MR 0995705 |
Zbl 0679.53043
[8] Kowalski O., Prüfer F.:
Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Arch. Math. 30 (1994), 45-57.
MR 1282112
[9] Kowalski O., Tricerri F., Vanhecke L.:
Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl. 71 (1992), 471-501.
MR 1193605 |
Zbl 0836.53029
[10] Lastaria F.G.: Metriche omogenee con la stessa curvatura. Tesi di dottorato di ricerca, University of Milano (1989).
[11] Lastaria F.G.:
Homogeneous metrics with the same curvature. Simon Stevin 65 (1991), 267-281.
MR 1162498 |
Zbl 0762.53034
[12] Nicolodi L., Tricerri F.:
On two theorems of I.M. Singer about homogeneous spaces. Ann. Global Anal. Geom. 8 (1990), 193-209.
MR 1088511 |
Zbl 0676.53058
[13] Sekigawa K., Suga H., Vanhecke L.:
Curvature homogeneity for four-dimensional manifolds. J. Korean Math. Soc. 32 (1995), 93-101.
MR 1321091 |
Zbl 0832.53031
[14] Singer I.M.:
Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697.
MR 0131248 |
Zbl 0171.42503
[15] Takagi H.:
Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. J. 27 (1975), 103-110.
MR 0442852 |
Zbl 0323.53037