Previous |  Up |  Next

Article

Keywords:
homogeneous spaces; Singer invariant
Summary:
We show that the Singer invariant of a four-dimensional homogeneous space is at most $1$.
References:
[1] Bérard Bergery L.: Les espaces homogènes riemanniens de dimension $4$. in Géométrie riemannienne en dimension $4$ (Séminaire A.Besse) Cedic, Paris (1981), pp.40-60. MR 0769130
[2] Calvaruso G., Vanhecke L.: Special ball-homogeneous spaces. Z. Anal. Anwendungen 16 (1997), 789-800. MR 1615680 | Zbl 0892.53023
[3] Calvaruso G., Vanhecke L.: Ball-homogeneous spaces. Proc. Workshop on Recent Topics in Differential Geometry, Santiago de Compostela (1997). Zbl 0892.53023
[4] Ishihara S.: Homogeneous Riemannian spaces of four dimensions. J. Math. Soc. Japan 7 (1955), 345-370. MR 0082717 | Zbl 0067.39602
[5] Jensen G.R.: Homogeneous Einstein spaces of dimension four. J. Differential Geom. 3 (1969), 309-349. MR 0261487 | Zbl 0194.53203
[6] Kiyota Y.: Singer invariants of Riemannian homogeneous spaces. Master Thesis, Ochanomizu University (in Japanese) (1998).
[7] Kowalski O.: A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolinae 30 (1989), 85-88. MR 0995705 | Zbl 0679.53043
[8] Kowalski O., Prüfer F.: Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Arch. Math. 30 (1994), 45-57. MR 1282112
[9] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl. 71 (1992), 471-501. MR 1193605 | Zbl 0836.53029
[10] Lastaria F.G.: Metriche omogenee con la stessa curvatura. Tesi di dottorato di ricerca, University of Milano (1989).
[11] Lastaria F.G.: Homogeneous metrics with the same curvature. Simon Stevin 65 (1991), 267-281. MR 1162498 | Zbl 0762.53034
[12] Nicolodi L., Tricerri F.: On two theorems of I.M. Singer about homogeneous spaces. Ann. Global Anal. Geom. 8 (1990), 193-209. MR 1088511 | Zbl 0676.53058
[13] Sekigawa K., Suga H., Vanhecke L.: Curvature homogeneity for four-dimensional manifolds. J. Korean Math. Soc. 32 (1995), 93-101. MR 1321091 | Zbl 0832.53031
[14] Singer I.M.: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697. MR 0131248 | Zbl 0171.42503
[15] Takagi H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. J. 27 (1975), 103-110. MR 0442852 | Zbl 0323.53037
Partner of
EuDML logo