Article
Keywords:
Fréchet-Urysohn space; $\langle\alpha_4\rangle$-space; Martin's Axiom; almost disjoint functions; double iterated power
Summary:
Assuming Martin's Axiom, we provide an example of two Fréchet-Urysohn $\langle\alpha_4\rangle$-spaces, whose product is a non-Fréchet-Urysohn $\langle\alpha_4\rangle$-space. This gives a consistent negative answer to a question raised by T. Nogura.
References:
[Ar1] Arhangel'skii A.V.:
The frequency spectrum of a topological space and the classification of spaces. Sov. Math. Dokl. 13 (1972), 265-268.
MR 0394575
[Ar2] Arhangel'skii A.V.: The frequency spectrum of a topological space and the product operation. Transl. Moscow Math. Soc., Issue 2 (1981), 163-200.
[CS] Costantini C., Simon P.:
An $\alpha_4$, not Fréchet product of $\alpha_4$ Fréchet spaces. Topology Appl., to appear.
MR 1783423 |
Zbl 0959.54006
[Do] Dow A.:
Two classes of Fréchet-Urysohn spaces. Proc. Amer. Math. Soc. 108 (1990), 241-247.
MR 0975638 |
Zbl 0675.54029
[En] Engelking R.:
General Topology. Revised and Completed Ed. Heldermann, Berlin, 1989.
MR 1039321
[Ku] Kunen K.:
Set Theory. An Introduction to Independence Proofs. Nort-Holland, Amsterdam, 1980.
MR 0597342 |
Zbl 0534.03026
[No] Nogura T.:
The product of $\left\langle\alpha_i\right\rangle$-spaces Topology Appl. 21 (1985), 251-259.
MR 0812643
[Ol] Olson R.C.:
Bi-quotient maps, countably bi-sequential spaces, and related topics. Gen. Topology Appl. 4 (1974), 1-28.
MR 0365463 |
Zbl 0278.54008
[Si1] Simon P.:
A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolinae 21 (1980), 749-753.
MR 0597764 |
Zbl 0466.54022