Article
Keywords:
metric dimension; limit capacity; entropy dimension; box-counting dimension; Hausdorff dimension; Kolmogorov dimension; Minkowski dimension; Bouligand dimension; converging sequences; convex sequences; differentiable function
Summary:
Converging sequences in metric space have Hausdorff dimension zero, but their metric dimension (limit capacity, entropy dimension, box-counting dimension, Hausdorff dimension, Kolmogorov dimension, Minkowski dimension, Bouligand dimension, respectively) can be positive. Dimensions of such sequences are calculated using a different approach for each type. In this paper, a rather simple formula for (lower, upper) metric dimension of any sequence given by a differentiable convex function, is derived.
References:
[M-Z] Mišík L., Žáčik T.:
On some properties of the metric dimension. Comment. Math. Univ. Carolinae 31.4 (1990), 781-791.
MR 1091376
[P-S] Pontryagin L.S., Snirelman L.G.:
Sur une propriete metrique de la dimension. Annals of Math. 33 (1932), 156-162 Appendix to the Russian translation of ``Dimension Theory'' by W. Hurewitcz and H. Wallman, Izdat. Inostr. Lit. Moscow, 1948.
MR 1503042
[H] Hawkes J.:
Hausdorff measure, entropy and the independents of small sets. Proc. London Math. Soc. (3) 28 (1974), 700-724.
MR 0352412
[B-T] Besicovitch A.S., Taylor S.J.:
On the complementary intervals of a linear closed sets of zero Lebesgue measure. J. London Math. Soc. 29 (1954), 449-459.
MR 0064849
[K-A] Koçak Ş., Azcan H.:
Fractal dimensions of some sequences of real numbers. Do{ğ}a - Tr. J. of Mathematics 17 (1993), 298-304.
MR 1255026