Previous |  Up |  Next

Article

Keywords:
connectifiable; perfect; feebly compact
Summary:
A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi$ be the following statement: ``a perfect $T_3$-space $X$ with no more than $2^{\frak c}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi$ nor $\neg \psi$ is provable in ZFC.
References:
[1] Alas O.T., Tkačenko M.G., Tkachuk V.V., Wilson R.G.: Connectifying some spaces. Topology Appl. 71 (1996), 203-215. MR 1397942
[2] Alas O.T., Tkačenko M.G., Tkachuk V.V., Wilson R.G.: Connectedness and local connectedness of topological groups and extensions. Comment. Math. Univ. Carolinae, to appear. MR 1756549
[3] Bagley R.W., Connell E.H., McKnight J.D., Jr.: On properties characterizing pseudocompact spaces. Proc. A.M.S. 9 (1958), 500-506. MR 0097043
[4] van Douwen E.K.: The integers and topology. 111-167 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). MR 0776622 | Zbl 0561.54004
[5] Engelking R.: General Topology. Sigma series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). MR 1039321 | Zbl 0684.54001
[6] Fedeli A., Le Donne A.: On locally connected connectifications. Topology Appl. (1998). Zbl 0928.54018
[7] Fedeli A., Le Donne A.: Connectifications and open components. submitted. Zbl 0953.54023
[8] Kunen K.: Set Theory. North Holland (1980). MR 0597342 | Zbl 0443.03021
[9] Ostaszewski A.J.: On countably compact, perfectly normal spaces. J. London Math. Soc. (2) 14 (1976), 505-516. MR 0438292 | Zbl 0348.54014
[10] Porter J.R., Woods R.G.: Subspaces of connected spaces. Topology Appl. 68 (1996), 113-131. MR 1374077 | Zbl 0855.54025
[11] Swardson M.A.: Nearly realcompact spaces and $T_2$-connectifiability. 358-361 Proceedings of the 8th Prague Topological Symposium (1996). MR 1617114
[12] Vaughan J.E.: Countably compact and sequentially compact spaces. 569-602 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). MR 0776631 | Zbl 0562.54031
[13] Watson S., Wilson R.G.: Embeddings in connected spaces. Houston J. Math. 19 (1993), 3 469-481. MR 1242433 | Zbl 0837.54012
[14] Weiss W.A.R.: Countably compact spaces and Martin's axiom. Canad. J. Math. 30 (1978), 243-249. MR 0467673 | Zbl 0357.54019
Partner of
EuDML logo