Previous |  Up |  Next

Article

Keywords:
differentially trivial ring; Noetherian ring
Summary:
We characterize left Noetherian rings which have only trivial derivations.
References:
[1] Komarnytskyi M.Ya., Artemovych O.D.: On the ideally differential rings (in Ukrainian). Herald of Lviv University (1983), 21 35-40. MR 1030517
[2] Artemovych O.D.: Ideally differential and perfect rigid rings (in Ukrainian). DAN UkrSSR (1985), 4 3-5. MR 0796364
[3] Nowicki A.: Differential rings in which any ideal is differential. Acta Universitatis Carolinae (1985), 26 3 43-49. MR 0830268 | Zbl 0596.13011
[4] McConnel J.C., Robson J.C.: Noncommutative Noetherian Rings. Chictester e.a.: J.Wiley and Sons (1987). MR 0934572
[5] Bourbaki N.: Algebre commutative. Hermann, Paris (1961). Zbl 0119.03603
[6] Artemovych O.D.: Differentially trivial and rigid rings of finite rank. preprint. MR 1684503 | Zbl 0931.16018
[7] Zariski O., Samuel P.: Commutative Algebra. I D. van Nostrand C., Princeton (1960). MR 0120249 | Zbl 0121.27801
[8] Atiyah M.F., Macdonald I.G.: Introduction to Commutative Algebra. Addison-Wesley P.C., Reading (1969). MR 0242802 | Zbl 0175.03601
[9] Lambek J.: Lectures on Rings and Modules. Blaisdell Publ. Com., Waltham, Toronto, London (1966). MR 0206032 | Zbl 0143.26403
Partner of
EuDML logo