Previous |  Up |  Next

Article

Keywords:
$H$-spaces; generalized games; Nash equilibria; $H$-convexity; open lower sections; fixed points
Summary:
We show that a recent existence result for the Nash equilibria of generalized games with strategy sets in $H$-spaces is false. We prove that it becomes true if we assume, in addition, that the feasible set of the game (the set of all feasible multistrategies) is closed.
References:
[1] Aubin J.P.: Optima and Equilibria. Springer-Verlag, Berlin, 1993. MR 1217485 | Zbl 0930.91001
[2] Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhäuser, Boston, 1990. MR 1048347 | Zbl 1168.49014
[3] Bardaro C., Ceppitelli R.: Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities. J. Math. Anal. Appl. 132 (1988), 484-490. MR 0943521 | Zbl 0667.49016
[4] Bardaro C., Ceppitelli R.: Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities. J. Math. Anal. Appl. 137 (1989), 46-58. MR 0981922
[5] Bardaro C., Ceppitelli R.: Fixed point theorems and vector-valued minimax theorems. J. Math. Anal. Appl. 146 (1990), 363-373. MR 1043106 | Zbl 0698.49011
[6] Cubiotti P.: Existence of solutions for lower semicontinuous quasi-equilibrium problems. Comput. Math. Applic. 30 (12) (1995), 11-22. MR 1360323 | Zbl 0844.90094
[7] Harker P.T.: Generalized Nash games and quasi-variational inequalities. European J. Oper. Res. 54 (1991), 81-94. Zbl 0754.90070
[8] Huang Y.: Fixed point theorems with an application in generalized games. J. Math. Anal. Appl. 186 (1994), 634-642. MR 1293845 | Zbl 0814.54029
[9] Klein E., Thompson A.C.: Theory of Correspondences. John Wiley and Sons, New York, 1984. MR 0752692 | Zbl 0556.28012
[10] Tian G., Zhou J.: The Maximum theorem and the existence of Nash equilibria of (generalized) games without lower semicontinuities. J. Math. Anal. Appl. 166 (1992), 351-364. MR 1160931
Partner of
EuDML logo