Previous |  Up |  Next

Article

Keywords:
uniform rotundity; uniform smoothness; moduli of power type; superreflexive
Summary:
We study various notions of directional moduli of rotundity and when such moduli of rotundity of power type imply the underlying space is superreflexive. Duality with directional moduli of smoothness and some applications are also discussed.
References:
[1] Borwein J.M., Noll D.: Second-order differentiability of convex functions in Banach spaces. Trans. Amer. Math. Soc. 342 (1994), 43-81. MR 1145959 | Zbl 0802.46027
[2] Borwein J.M., Treiman J.S., Zhu Q.J.: Partially smooth variational principles and applications. preprint. MR 1707806 | Zbl 0927.49010
[3] Bourgin R.D.: Geometric Aspects of Convex Sets with the Radon-Nikodym Property. Lecture Notes in Mathematics 993, Springer-Verlag, 1983. MR 0704815 | Zbl 0512.46017
[4] Cudia D.F.: The geometry of Banach spaces. Smoothness. Trans. Amer. Math. Soc. 110 (1964), 284-314. MR 0163143 | Zbl 0123.30701
[5] Day M.M.: Uniform convexity III. Bull. Amer. Math. Soc. 49 (1943), 745-750. MR 0009422 | Zbl 0063.01056
[6] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman, 1993. MR 1211634 | Zbl 0782.46019
[7] Deville R., Godefroy G., Zizler V.: Smooth bump functions and the geometry of Banach spaces. Mathematika 40 (1993), 305-321. MR 1260894
[8] Fabian M.: Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces. Proc. London Math. Soc. 51 (1985), 113-126. MR 0788852 | Zbl 0549.46025
[9] Giles J.R., Sciffer S.: On weak Hadamard differentiability of convex functions on Banach spaces. Bull. Austral. Math. Soc. 54 (1996), 155-166. MR 1403000 | Zbl 0886.46050
[10] Hájek P.: Dual renormings of Banach spaces. Comment. Math. Univ. Carolinae 37 (1996), 241-253. MR 1398999
[11] McLaughlin D., Poliquin R., Vanderwerff J., Zizler V.: Second-order Gateaux differentiable bump functions and approximations in Banach spaces. Canad. J. Math. 45 (1993), 612-625. MR 1222519 | Zbl 0796.46005
[12] McLaughlin D., Vanderwerff J.: Higher-order Gateaux differentiable bump functions on Banach spaces. Bull. Austral. Math. Soc. 51 (1995), 291-300. MR 1322795
[13] Moors W.B., Giles J.R.: Generic continuity of minimal set-valued mappings. J. Austral. Math. Soc. 63A (1997), 238-262. MR 1475564 | Zbl 0912.46017
[14] Smith M.A.: Banach spaces that are uniformly rotund in weakly compact sets of directions. Canad. J. Math. 29 (1977), 963-970. MR 0450942 | Zbl 0338.46021
[15] Smith M.A.: A curious generalization of local uniform rotundity. Comment. Math. Univ. Carolinae 25 (1984), 659-665. MR 0782015 | Zbl 0578.46017
[16] Swaminathan S.: Normal structure in Banach spaces and its generalisations. Contemporary Mathematics 18 (1983), 201-215. MR 0728601 | Zbl 0512.46014
[17] Turett B.: A dual view of a theorem of Ballion. Nonlinear Analysis and Applications, Dekker, New York, 1982, pp.279-286. MR 0689566
[18] Zajíček L.: Differentiability of the distance function and points of multivaluedness of the metric projection in Banach spaces. Czech. Math. J. 33 (1983), 292-308. MR 0699027
Partner of
EuDML logo