Previous |  Up |  Next

Article

Keywords:
decreasing (G); decreasing (A); homogeneous; monotone normality; closed map
Summary:
We consider the class of decreasing (G) spaces introduced by Collins and Roscoe and address the question as to whether it coincides with the class of decreasing (A) spaces. We provide a partial solution to this problem (the answer is yes for homogeneous spaces). We also express decreasing (G) as a monotone normality type condition and explore the preservation of decreasing (G) type properties under closed maps. The corresponding results for decreasing (A) spaces are unknown.
References:
[1] Balogh Z.: Topological spaces with point-networks. Proc. Amer. Math. Soc. 94 (1985), 497-501. MR 0787901 | Zbl 0584.54024
[2] Borges C.J.R.: A study of monotonically normal spaces. Proc. Amer. Math. Soc. 38 (1973), 211-214. MR 0324644 | Zbl 0257.54018
[3] Collins P.J., Roscoe A.W.: Criteria for metrisability. Proc. Amer. Math. Soc. 90 (1984), 631-640. MR 0733418 | Zbl 0541.54034
[4] Collins P.J., Reed G.M., Roscoe A.W., Rudin M.E.: A lattice of conditions on topological spaces. Proc. Amer. Math. Soc. 94 (1985), 487-496. MR 0787900 | Zbl 0562.54043
[5] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[6] Gao Y.-Z.: A note concerning the Collins, Reed, Roscoe, Rudin metrization theorem. Topology Appl. 74 (1996), 73-82. MR 1425927 | Zbl 0883.54028
[7] Gartside P.M., Moody P.J.: Well-ordered (F) spaces. Topology Proc. 17 (1992), 111-130. MR 1255798 | Zbl 0797.54038
[8] Lindgren W.F., Nyikos P.J.: Spaces with bases satisfying certain order and intersection properties. Pacific J. Math. 66 (1976), 455-476. MR 0445452 | Zbl 0354.54016
[9] Moody P.J., Reed G.M., Roscoe A.W., Collins P.J.: A lattice of conditions on topological spaces II. Fund. Math. 138 (1991), 69-81. MR 1124537 | Zbl 0745.54008
[10] Moody P.J., Roscoe A.W.: Acyclic monotone normality. Topology Appl. 47 (1992), 53-67. MR 1189992 | Zbl 0801.54018
[11] Stares I.S.: Concerning the Dugundji extension property. Topology Appl. 63 (1995), 165-172. MR 1330686 | Zbl 0833.54016
Partner of
EuDML logo