Previous |  Up |  Next

Article

Keywords:
effect algebras; convex structures; ordered linear spaces
Summary:
Effect algebras have important applications in the foundations of quantum mechanics and in fuzzy probability theory. An effect algebra that possesses a convex structure is called a convex effect algebra. Our main result shows that any convex effect algebra admits a representation as a generating initial interval of an ordered linear space. This result is analogous to a classical representation theorem for convex structures due to M.H. Stone.
References:
[1] Beltrametti E.G., Bugajski S.: A classical extension of quantum mechanics. J. Phys. A: Math. Gen. 28 (1995), 3329-3343. MR 1344371 | Zbl 0859.46049
[2] Beltrametti E.G., Bugajski S.: Quantum observables in classical frameworks. Internat. J. Theoret. Phys. 34 (1995), 1221-1229. MR 1353665 | Zbl 0850.81019
[3] Beltrametti E.G., Bugajski S.: Effect algebras and statistical physical theories. to appear. MR 1449546 | Zbl 0874.06009
[4] Bugajski S.: Fundamentals of fuzzy probability theory. Internat. J. Theoret. Phys. 35 (1996), 2229-2244. MR 1423402 | Zbl 0872.60003
[5] Bugajski S., Hellwig K.-E., Stulpe W.: On fuzzy random variables and statistical maps. Rep. Math. Phys., to appear. MR 1617902 | Zbl 1026.60501
[6] Busch P., Grabowski M., Lahti P.: Operational Quantum Physics. Springer-Verlag, Berlin, 1995. MR 1356220 | Zbl 0863.60106
[7] Busch P., Lahti P., Mittlestaedt P.: The Quantum Theory of Measurement. Springer-Verlag, Berlin, 1991. MR 1176754
[8] Cattaneo G., Nisticò G.: Complete effect-preparation structures: attempt of a unification of two different approaches to axiomatic quantum mechanics. Nuovo Cimento 90B (1985), 161-175. MR 0827914
[9] Davies E.B.: Quantum Theory of Open Systems. Academic Press, London, 1976. MR 0489429 | Zbl 0388.46044
[10] Dvurečenskij A.: Tensor products of difference posets. Trans. Amer. Math. Soc. 147 (1995), 1043-1057. MR 1249874
[11] Dvurečenskij A., Pulmannová S.: Difference posets, effects, and quantum measurements. Internat. J. Theoret. Phys. 33 (1994), 819-850. MR 1286161
[12] Evans R.: The Perception of Color. John Wiley, New York, 1974.
[13] Foulis D., Bennett M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1352. MR 1304942
[14] Foulis D., Bennett M.K.: Interval algebras and unsharp quantum logics. to appear.
[15] Giuntini R., Greuling H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945. MR 1013913
[16] Gudder S.: Convexity and mixtures. SIAM Review 19 (1977), 221-240. MR 0433327 | Zbl 0354.52001
[17] Gudder S.: Convex structures and operational quantum mechanics. Comm. Math. Phys. 29 (1973), 249-264. MR 0342092
[18] Gudder S.: Fuzzy probability theory. Demonstratio Math., to appear. MR 1623780 | Zbl 0984.60001
[19] Holevo A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam, 1982. MR 0681693 | Zbl 0497.46053
[20] Kôpka F.: D-posets and fuzzy sets. Tatra Mountains Math. Publ. 1 (1992), 83-87. MR 1230466
[21] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21-34. MR 1290269
[22] Kraus K.: States, Effects, and Operations. Springer-Verlag, Berlin, 1983. MR 0725167 | Zbl 0545.46049
[23] Ludwig G.: Foundations of Quantum Mechanics. Springer-Verlag, Berlin, 1983. MR 0690770 | Zbl 0574.46057
[24] Stone M.H.: Postulates for the barycentric calculus. Ann. Math. 29 (1949), 25-30. MR 0036014 | Zbl 0037.25002
[25] Thrall R.M., Coombs C.H., Davis R.L.: Decision Processes. John Wiley, New York, 1954. MR 0066616 | Zbl 0057.35603
[26] von Neumann J., Morgenstern O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey, 1944. MR 0011937 | Zbl 1112.91002
Partner of
EuDML logo