Previous |  Up |  Next

Article

Keywords:
uniform frames and sigma frames; fine; metric-fine; completion
Summary:
A locallic version of Hager's metric-fine spaces is presented. A general definition of $\Cal A$-fineness is given and various special cases are considered, notably $\Cal A =$ all metric frames, $\Cal A =$ complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.
References:
[1] Banaschewski B.: Recent results in pointfree topology. Annals New York Acad. of Sci. 659 (1992), 29-41. MR 1485267
[2] Banaschewski B.: The frame envelope of a $\sigma $-frame. Quaestiones Math. 16 (1991), 51-60. MR 1217474
[3] Banaschewski B., Gilmour C.R.A.: Stone Čech compactification and dimension theory for regular $\sigma$-frames. J. London Math. Soc. 39 (1989), 1-8. MR 0989914 | Zbl 0675.06005
[4] Banaschewski B., Gilmour C.R.A.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolinae 37 (1996), 577-587. MR 1426922 | Zbl 0881.54018
[5] Banaschewski B., Mulvey C.: Stone Čech compactification of locales I. Houston J. Math. 6 (1980), 301-312. MR 0597771 | Zbl 0473.54026
[6] Banaschewski B., Pultr A.: Samuel compactification and completion of uniform frames. Math. Proc. Camb. Phil. Soc. 108 (1990), 63-78. MR 1049760 | Zbl 0733.54020
[7] Banaschewski B., Pultr A.: Paracompactness revisited. Applied Categorical Structures 1 (1993), 181-190. MR 1245799 | Zbl 0797.54032
[8] Gillman L., Jerrison M.: Rings of Continuous Functions. Van Nostrand Princeton (1960). MR 0116199
[9] Gilmour C.R.A.: Realcompact Alexandroff spaces and regular $\sigma$-frames. Math. Proc. Camb. Phil. Soc. 96 (1984), 73-79. MR 0743702
[10] Frolik Z.: A note on metric-fine spaces. Proc. Amer. Math. Soc. 46 (1974), 111-119. MR 0358704 | Zbl 0301.54033
[11] Hager A.: Some nearly fine uniform spaces. Proc. London Math. Soc. 28 (1974), 517-546. MR 0397670 | Zbl 0284.54017
[12] Hager A.: Three classes of uniform spaces. Proc. Prague Conf. on General Topology, 1971. MR 0353270 | Zbl 0313.54030
[13] Hager A.: Uniformities induced by proximity, cozero and Baire sets. unpublished manuscript.
[14] Hager A., Rice M.D.: Coreflections commuting with completion. J. of Math. 26 (101) (1976), 371-380. MR 0418051
[15] Isbell J.: Atomless parts of spaces. Math. Scand. 31 (1972), 5-32. MR 0358725 | Zbl 0246.54028
[16] Isbell J.: Uniform Spaces. Amer. Math. Soc. Providence (1964). Zbl 0124.15601
[17] Johnstone P.T.: Stone Spaces. Cambridge Studies in Advanced Math. Cambridge University Press (1982). MR 0698074 | Zbl 0499.54001
[18] Johnstone P.T.: The point of pointless topology. Bull. Amer. Math. Soc 8 (1983), 41-52. MR 0682820 | Zbl 0499.54002
[19] Kříž I.: A direct description of uniform completion in locales and a characterization of LT groups. Cahiers Topologie et Geom. Differentielle Categoriques 27 (1986), 19-34. MR 0845407
[20] Kříž I., Pultr A.: Systems of covers of frames and resulting subframes. Proc. 14th Winter School, Suppl. ai Rendiconti del Circ. Mat. di Palermo 14 (1987), 353-364. MR 0920868
[21] Madden J.: Kappa frames. J. Pure and Applied Algebra 70 (1991), 107-127. MR 1100510 | Zbl 0721.06006
[22] Madden J., Vermeer H.: Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. MR 0830360 | Zbl 0603.54021
[23] Pultr A.: Pointless uniformities I: Complete regularity. Comment. Math. Univ. Carolinae 25 (1984), 91-104. MR 0749118 | Zbl 0543.54023
[24] Pultr A.: Pointless uniformities II: (Dia)metrization. Comment. Math. Univ. Carolinae 25 (1984), 104-120. MR 0749119
[25] Pultr A.: Remarks on metrizable frames. Proc. 12th Winter School, Suppl. ai Rendiconti del Circ. Mat. di Palermo 6 (1984), 247-258. MR 0782722
[26] Pultr A., Ulehla J.: Notes on characterization of paracompact frames. Comment. Math. Univ. Carolinae 30 (1989), 377-384. MR 1014137 | Zbl 0672.54018
[27] Reynolds G.: Alexandroff algebras and complete regularity. Proc. Amer. Math. Soc. 76 (1979), 322-326. MR 0537098 | Zbl 0416.54015
[28] Rice M.D.: Metric-fine uniform spaces. Proc. London Math. Soc. 11 (1975), 53-64. MR 0420566 | Zbl 0324.54018
[29] Rice M.D.: Complete uniform spaces. Proc. Second Internat. Topology Conf. (Pittsburgh), 1972. Zbl 0327.54025
[30] Rice M.D.: Subcategories of uniform spaces. Trans. Amer. Math. Soc. 221 (1975), 305-314. MR 0358708 | Zbl 0306.54038
[31] Sun S.H.: On paracompact locales and metric locales. Comment. Math. Univ. Carolinae 30 (1989), 101-107. MR 0995708 | Zbl 0691.06003
[32] Walters J.L.: Uniform sigma frames and the cozero part of uniform frames. Masters Thesis, University of Cape Town (1989).
[33] Walters J.L.: Compactifications and uniformities on sigma frames. Comm. Math. Univ. Carolinae 32 (1991), 189-198. MR 1118301 | Zbl 0735.54014
[34] Walters-Wayland J.L.: Completeness and nearly fine uniform frames. Doctoral Thesis, Universite Catholique de Louvain (1995).
[35] Walters-Wayland J.L.: Shirota's Theorem in the frame setting. preprint.
[36] Walters-Wayland J.L.: Cozfine and measurable uniform frames. preprint. MR 1733252 | Zbl 0935.54004
[37] Walters-Wayland J.L.: Injectivity and subfineness in uniform locales. preprint.
[38] Willard S.: General Topology. Addison-Wesley Reading, Mass. (1970). MR 0264581 | Zbl 0205.26601
Partner of
EuDML logo