Article
Keywords:
gradual type of change; polynomial regression; estimator; limit distribution
Summary:
Recently Hu\v{s}ková (1998) has studied the least squares estimator of a change-point in gradually changing sequence supposing that the sequence increases (or decreases) linearly after the change-point. The present paper shows that the limit behavior of the change-point estimator for more complicated gradual changes is similar. The limit variance of the estimator can be easily calculated from the covariance function of a limit process.
References:
[3] Davies R.B.:
Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74 33-43 (1987).
MR 0885917 |
Zbl 0612.62023
[4] Hinkley D.:
Inference about the intersection in two-phase regression. Biometrika 56 495-504 (1969).
Zbl 0183.48505
[5] Hušková M.:
Estimation in location model with gradual changes. Comment. Math. Univ. Carolinae 39 (1998), 147-157.
MR 1623002
[6] Knowles M., Siegmund D., Zhang H.:
Confidence regions in semilinear regression. Biometrika 78 15-31 (1991).
MR 1118227 |
Zbl 0728.62063
[7] Petrov V.V.:
Predel'nyje teoremy dlja sum nezavisimych slucajnych velicin. Nauka Moskva (1987).
MR 0896036
[8] Siegmund D., Zhang H.:
Confidence region in broken line regression. Change-point problems IMS Lecture Notes - Monograph Series 23 292-316.
MR 1477932