Article
Keywords:
submaximal; quasimaximal; pseudomaximal; ultrafilter; tensorproduct; measurable cardinal; $\sigma$-discrete; tree; Čech-Stone-compactification; retraction
Summary:
The structure of sub-, pseudo- and quasimaximal spaces is investigated. \linebreak A method of constructing non-trivial quasimaximal spaces is presented.
References:
[Hew43] Hewitt E.:
A problem of set theoretic topology. Duke Math. J. 10 (1947), 309-333.
MR 0008692
[Bou66] Bourbaki N.:
General Topology, Part 1. Addison-Wesley Publishing Company, Reading, Massachusetts, 1966.
Zbl 0301.54001
[Cam77] Cameron D.E.:
A survey of maximal topological spaces. Topology Proc. 2 (1977), 11-60.
MR 0540596
[GSW77] Guthrie J.A., Stone H.E., Wage M.L.: Maximal connected Hausdorff topologies. Topology Proc. 2 (1977), 349-353.
[vDo93] van Douwen E.K.:
Applications of maximal topologies. Topology Appl. 51 (1993), 125-139.
MR 1229708 |
Zbl 0845.54028
[A&C95] Arhangel'skii A.V., Collins P.J.:
On submaximal spaces. Topology Appl. 64 (1995), 219-241.
MR 1342519
[C&G96] Comfort W.W., Garcia-Ferreira S.:
Resolvability, a selective survey and some new results. Topology Appl. 74 (1996), 149-167.
MR 1425934 |
Zbl 0866.54004
[A..97] Alas O.T., Protasov L.V., Tkachenko M.G., Tkachuk V.V., Wilson R.G., Yaschenko I.V.:
Almost all submaximal groups are paracompact and $\sigma$-discrete. preprint.
Zbl 0904.54027