Article
Keywords:
frame; (metric) diameter; metrization
Summary:
We present a unified treatment of pointfree metrization theorems based on an analysis of special properties of bases. It essentially covers all the facts concerning metrization from Engelking [1] which make pointfree sense. With one exception, where the generalization is shown to be false, all the theorems extend to the general pointfree context.
Related articles:
References:
[1] Engelking R.:
General Topology. Sigma Series in Pure Mathematics, Vol.6, Helderman Verlag, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[3] Isbell J.R.:
Graduation and dimension in locales. in: Aspects of Topology, London MS Lecture Notes 93 (1985), 195-210.
MR 0787829 |
Zbl 0555.54020
[5] Kaiser T.:
A sufficient condition of full normality. Comment Math. Univ. Carolinae 37 (1996), 381-389.
MR 1399010 |
Zbl 0847.54025
[6] Pultr A.:
Pointless uniformities II. (Dia)metrization. Comment. Math. Univ. Carolinae 25 (1984), 105-120.
MR 0749119
[7] Pultr A.:
Remarks on metrizable locales. Suppl. Rend. Circ. Mat. Palermo 6 (1984), 247-258.
MR 0782722 |
Zbl 0565.54001
[8] Pultr A.:
Diameters in locales: How bad they can be. Comment. Math. Univ. Carolinae 29 (1988), 731-742.
MR 0982793 |
Zbl 0668.06008
[9] Pultr A., Úlehla J.:
Notes on characterization of paracompact frames. Comment. Math. Univ. Carolinae 30 (1989), 377-384.
MR 1014137
[10] Sun Shu-Hao:
On paracompact locales and metric locales. Comment. Math. Univ. Carolinae 30 (1989), 101-107.
MR 0995708
[11] Vickers S.:
Topology via Logic. Cambridge Tracts in Theor. Comp. Sci., Number 5, Cambridge University Press, Cambridge, 1985.
MR 1002193 |
Zbl 0922.54002