Previous |  Up |  Next

Article

Keywords:
frame; (metric) diameter; metrization
Summary:
We present a unified treatment of pointfree metrization theorems based on an analysis of special properties of bases. It essentially covers all the facts concerning metrization from Engelking [1] which make pointfree sense. With one exception, where the generalization is shown to be false, all the theorems extend to the general pointfree context.
References:
[1] Engelking R.: General Topology. Sigma Series in Pure Mathematics, Vol.6, Helderman Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[2] Isbell J.R.: Atomless parts of spaces. Math. Scand. 31 (1972), 5-32. MR 0358725 | Zbl 0246.54028
[3] Isbell J.R.: Graduation and dimension in locales. in: Aspects of Topology, London MS Lecture Notes 93 (1985), 195-210. MR 0787829 | Zbl 0555.54020
[4] Johnstone P.T.: Stone Spaces. Cambridge University Press, Cambridge, 1982. MR 0698074 | Zbl 0586.54001
[5] Kaiser T.: A sufficient condition of full normality. Comment Math. Univ. Carolinae 37 (1996), 381-389. MR 1399010 | Zbl 0847.54025
[6] Pultr A.: Pointless uniformities II. (Dia)metrization. Comment. Math. Univ. Carolinae 25 (1984), 105-120. MR 0749119
[7] Pultr A.: Remarks on metrizable locales. Suppl. Rend. Circ. Mat. Palermo 6 (1984), 247-258. MR 0782722 | Zbl 0565.54001
[8] Pultr A.: Diameters in locales: How bad they can be. Comment. Math. Univ. Carolinae 29 (1988), 731-742. MR 0982793 | Zbl 0668.06008
[9] Pultr A., Úlehla J.: Notes on characterization of paracompact frames. Comment. Math. Univ. Carolinae 30 (1989), 377-384. MR 1014137
[10] Sun Shu-Hao: On paracompact locales and metric locales. Comment. Math. Univ. Carolinae 30 (1989), 101-107. MR 0995708
[11] Vickers S.: Topology via Logic. Cambridge Tracts in Theor. Comp. Sci., Number 5, Cambridge University Press, Cambridge, 1985. MR 1002193 | Zbl 0922.54002
Partner of
EuDML logo