Previous |  Up |  Next

Article

Keywords:
nonlinear varionational inequality problems; $p$-monotone and $p$-Lipschitzian operators; KKM mappings
Summary:
The solvability of a class of monotone nonlinear variational inequality problems in a reflexive Banach space setting is presented.
References:
[1] Browder F.E.: On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 419-425. MR 0203533 | Zbl 0143.36902
[2] Browder F.E., Petryshyn W.V.: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 20 (1967), 197-228. MR 0217658
[3] Fan K.: Some properties of convex sets related to fixed point theorems. Math. Annal. 266 (1984), 519-537. MR 0735533 | Zbl 0515.47029
[4] Glowinski R.: Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York, 1984. MR 0737005 | Zbl 1139.65050
[5] Goeleven D., Motreanu D.: Eigenvalue and dynamic problems for variational and hemivariational inequalities. Comm. Appl. Nonlinear Anal. 3 (4) (1996), 1-21. MR 1420282 | Zbl 0911.49009
[6] Noor M.A.: Mixed variational inequalities. Appl. Math. Lett. 3 (1990), 73-75. MR 1052253 | Zbl 0714.49014
[7] Noor M.A.: General auxiliary principle for variational inequalities. PanAmerican Math. J. 4 (1) (1994), 27-44. MR 1259947 | Zbl 0845.49005
[8] Siddiqi A.H., Ansari Q.H., Kazmi K.R.: On nonlinear variational inequalities. Indian J. Pure Appl. Math. 25 (9) (1994), 969-973. MR 1294066
[9] Szulkin A.: Positive solutions of variational inequalities: A degree-theoretic approach. J. Diff. Equ. 57 (1985), 90-111. MR 0788424 | Zbl 0535.35029
[10] Verma R.U.: Iterative algorithms for variational inequalities and associated nonlinear equations involving relaxed Lipschitz operators. Appl. Math. Lett. 9 (4) (1996), 61-63. MR 1415453 | Zbl 0864.65039
[11] Verma R.U.: Generalized variational inequalities involving multivalued relaxed monotone operators. Appl. Math. Lett., to appear. MR 1458162 | Zbl 0960.49509
[12] Verma R.U.: Nonlinear variational and constrained hemi-variational inequalities involving relaxed operators. Z. Angew. Math. Mech. 77 (1997), 387-391. MR 1455359
[13] Yao J.-C.: Applications of variational inequalities to nonlinear analysis. Appl. Math. Lett. 4 (1991), 89-92. Zbl 0734.49003
[14] Zeidler E.: Nonlinear Functional Analysis and its Applications IV. Springer-Verlag, New York, 1988. MR 0932255 | Zbl 0648.47036
Partner of
EuDML logo