Previous |  Up |  Next

Article

Keywords:
frame; locale; lower (upper) continuous chain; normal locale
Summary:
In this paper, localic upper, respectively lower continuous chains over a locale are defined. A localic Katětov-Tong insertion theorem is given and proved in terms of a localic upper and lower continuous chain. Finally, the localic Urysohn lemma and the localic Tietze extension theorem are shown as applications of the localic insertion theorem.
References:
[1] Engelking R.: General Topology. Warszawa, 1975. MR 0500779 | Zbl 0684.54001
[2] Fourman M.P., Hyland J.M.E.: Sheaf models for analysis. Applications of sheaves, Lecture Notes in Math., vol. 753, Springer-Verlag, 1979, pp.280-301. MR 0555550 | Zbl 0427.03028
[3] Johnstone P.T.: Stone Spaces. Cambridge Press, Cambridge, 1982. MR 0698074 | Zbl 0586.54001
[4] Johnstone P.T.: The point of pointless topology. Bull. Amer. Math. Soc. 8 (1983), 41-53. MR 0682820 | Zbl 0499.54002
[5] Katětov M.: On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91; correction 40 (1953), 203-205. MR 0050264
[6] Kubiak T.: A strengthening of the Katětov-Tong insertion theorem. Comment. Math. Univ. Carolinae 34 (1993), 357-362. MR 1241744 | Zbl 0807.54023
[7] Li Yong-ming: Weak locale quotient morphisms and locally connected frames. J. Pure Appl. Alg. 110 (1996), 101-107. MR 1390674
[8] Liu Yingming, Luo Maokang: Lattice-valued Hahn-Dieudonné-Tong insertion theorem and stratification structure. Top. Appl. 45 (1992), 173-178. MR 1180808 | Zbl 0767.54016
[9] Madden J.J.: Frames associated with an abelian $l$-group. Trans. Amer. Math. Soc. 331 (1992), 265-279. MR 1042288 | Zbl 0765.54029
[10] Pultr A., Tozzi A.: Equationally closed subframes and representation of quotient spaces. Cahiers Top. Geom. Diff. Cat. 33 (1993), 167-183. MR 1239466 | Zbl 0789.54008
[11] Tong H.: Some characterization of normal and perfectly normal spaces. Bull. Amer. Math. Soc. 54 (1948), 65; see also Duke Math. Soc. 19 (1952), 248-292. MR 0050265
[12] Vickers S.: Topology Via Logic. Cambridge Press, Cambridge, 1989. MR 1002193 | Zbl 0922.54002
Partner of
EuDML logo