Previous |  Up |  Next

Article

Keywords:
Stokes flows; hydrodynamical drag; lower and upper bounds
Summary:
This paper is devoted to lower and upper bounds of the hydrodynamical drag $T$ for a body in a Stokes flow. We obtain the upper bound since the solution for a flow in an annulus and therefore the hydrodynamical drag can be explicitly derived. The lower bound is obtained by comparison to the Newtonian capacity of a set and with the help of a result due to J. Simon $\,[10]$. The chosen approach provides an interesting lower bound which is independent of the interior of the body.
References:
[1] Allaire G.: Homogénéisation des équations de Stokes et de Navier-Stokes. Thesis, Pierre et Marie Curie University, France, 1989.
[2] Bello J.A., Fernandez-Cara E., Lemoine J., Simon J.: The differentiability of the drag with respect to the variations of a lipschitz domain in Navier-Stokes flow. SIAM J. Control Optim. 35 2 (1997), 626-640. MR 1436642
[3] Cioranescu D., Murat F.: Un terme étrange venu d'ailleurs. Non linear partial differential equations and their applications, Collège de France Seminar, 2 et 3 ed. by H. Brezis and J.L. Lions, Research Notes in Mathematics 60 et 70, Pitman, London, 1982. Zbl 0498.35034
[4] Dautray R., Lions J.L.: Analyse mathématique et calcul numérique pour les Sciences et les Techniques (Chapitre II L'opérateur de Laplace). INSTN C.E.A., 1985.
[5] Gilbart D., Trudinger N.S.: Elliptic partial differential equation of second order. second edition, Springer Verlag, 1983. MR 0737190
[6] Godbillon C.: Eléments de Topologie Algébrique. Hermann Paris, Collection méthodes, 1971. MR 0301725 | Zbl 0907.55001
[7] Heywood J.G.: On some paradoxes concerning two dimensional Stokes flow past an obstacle. Indiana University Mathematics Journal 24 5 (1974), 443-450. MR 0410123 | Zbl 0315.35075
[8] Mossino J.: Inégalités Isopérimètriques et applications en physique. Travaux en cours, Hermann, éditeurs des Sciences et des Arts, Paris, 1992. MR 0733257 | Zbl 0537.35002
[9] Sanchez-Hubert J., Sanchez-Palencia E.: Introduction aux méthodes asymptotiques et à l'homogénéisation. Masson, 1992.
[10] Simon J.: On a result due to L.A. Caffarelli and A. Friedman concerning the asymptotic behavior of a plasma. Non linear partial differential equations and their applications, Collège de France, Seminar volume IV, Research Notes in Mathematics, Pitman, London, 1983, pp.214-239. MR 0716520 | Zbl 0555.35045
[11] Simon J.: Distributions à valeurs vectorielles. to appear.
[12] Stokes G.G.: On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9 Part III (1851), 8-106.
Partner of
EuDML logo