Previous |  Up |  Next

Article

Keywords:
$G$-set; congruence lattice; congruence distributivity; congruence modularity; congruence $n$-permutability
Summary:
We describe $G$-sets whose congruences satisfy some natural lattice or multiplicative restrictions. In particular, we determine $G$-sets with distributive, arguesian, modular, upper or lower semimodular congruence lattice as well as congruence $n$-permutable $G$-sets for $n=2,2.5,3$.
References:
[1] Berman J.: On the congruence lattices of unary algebras. Proc. Amer. Math. Soc. 36 (1972), 34-38. MR 0309833 | Zbl 0249.08002
[2] Crawley P., Dilworth R.P.: Algebraic Theory of Lattices. Prentice-Hall, 1973. Zbl 0494.06001
[3] Egorova D.P.: Unars with the congruence lattice of a special kind. in: V.V. Vagner (ed.), Investigations in Algebra, Saratov State University, Saratov 5 (1977), pp.3-19 Russian. MR 0491412
[4] Egorova D.P.: The congruence lattice of unary algebra. in: V.N. Salii (ed.), Ordered Sets and Lattices, Saratov State University, Saratov 5 (1978), pp.11-44 Russian. MR 0547294
[5] Egorova D.P., Skornjakov L.A.: On the congruence lattice of unary algebra. in: V.N. Salii (ed.), Ordered Sets and Lattices, Saratov State University, Saratov 4 (1977), pp.28-40 Russian. MR 0480280
[6] McKenzie R.N., McNulty G.F., Taylor W.F.: Algebras. Lattices. Varieties. Vol. I, Wadsworth & Brooks/Cole, Monterey, 1987. MR 0883644 | Zbl 0611.08001
[7] Skornjakov L.A.: Unars. Colloq. Math. Soc. J. Bolyai 29 (1982), 735-743. MR 0660907 | Zbl 0504.08006
[8] Vernikov B.M.: Distributivity, modularity, and related conditions in lattices of overcommutative semigroup varieties. Proc. Int. Conf. ``Semigroups and their Applications, including Semigroup Rings'', accepted. Zbl 0970.20037
[9] Vernikov B.M., Volkov M.V.: Commutative semigroup varieties with modular subvariety lattices. in: J. Rhodes (ed.), Monoids and Semigroups with Applications, World Scientific, Singapore, 1991, pp. 233-253. MR 1142380 | Zbl 0797.20047
[10] Vernikov B.M., Volkov M.V.: Structure of lattices of nilpotent semigroup varieties. in: C. Bonzini, A. Cherubini and C. Tibiletti (eds.), Semigroups. Algebraic Theory and Applications to Formal Languages and Codes, World Scientific, Singapore, 1993, pp. 297-299. MR 1647267 | Zbl 0813.20064
[11] Vernikov B.M., Volkov M.V.: Lattices of nilpotent semigroup varieties. II. Izv. Ural State University, Ser. Matem., Mechan., accepted Russian.
[12] Vernikov B.M., Volkov M.V.: Semimodular varieties of semigroups. to appear. MR 1001692
[13] Vernikov B.M., Volkov M.V.: Permutability of fully invariant congruences on relatively free semigroups. Acta Sci. Math. (Szeged), submitted. Zbl 0889.20031
[14] Volkov M.V.: Commutative semigroup varieties with distributive subvariety lattices. Contrib. to General Algebra 7 (1991), 351-359. MR 1143098 | Zbl 0762.20022
[15] Volkov M.V.: Semigroup varieties with commuting fully invariant congruences on free objects. Contemp. Math. 131 part 3 (1992), 295-316. MR 1175889 | Zbl 0768.20025
[16] Volkov M.V.: Young diagrams and the structure of the lattice of overcommutative semigroup varieties. in: P.M. Higgins (ed.), Transformation Semigroups, Proc. Int. Conf. held at the Univ. Essex, Univ. Essex, Colchester, 1994, pp.99-110. MR 1491912 | Zbl 0880.20042
[17] Volkov M.V.: Identities in the Lattice of Semigroup Varieties. Doctor Sci. Dissertation, St. Petersburg, 1994 Russian.
Partner of
EuDML logo