Article
Keywords:
weighted inequalities; Bessel potential operators; Riesz potential operators
Summary:
Necessary conditions and sufficient conditions are derived in order that \linebreak Bessel potential operator $J_{s,\lambda }$ is bounded from the weighted Lebesgue spaces $L_{v}^{p}=L^{p}(\Bbb R^n,v(x)dx)$ into $L_{u}^{q}$ when $1<p\leq q<\infty $.
References:
[Ad1] Adams D.R.:
On the existence of capacity strong type estimates in $\Bbb R^n$. Ark. Mat. 14 (1976), 125-140.
MR 0417774
[Ad2] Adams D.R.:
Weighted nonlinear potential theory. Trans. Amer. Math. Soc. 297 (1986), 73-94.
MR 0849468 |
Zbl 0656.31012
[Ad-Pi] Adams D.R.:
Capacitary strong type estimates in semilinear problems. Ann. Inst. Fourier (Grenoble) 41 (1991), 117-135.
MR 1112194 |
Zbl 0741.35012
[Ar-Sm] Aronszajn N., Smith K.:
Theory of Bessel potentials. Ann. Inst. Fourier 11 Part I (1961), 385-475.
MR 0143935 |
Zbl 0102.32401
[Ch-Wh] Chanillo S., Wheeden R.:
$L^p$ estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators. Comm. Partial Differential Equations 10 (1985), 1077-1116.
MR 0806256
[Ke-Sa] Kerman R., Sawyer E.:
Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transform and Carleson measures. Ann. Inst. Fourier (Grenoble) 36 (1986), 207-228.
MR 0766965
[Ma-Ve] Maz'ya V.G., Verbitsky I.E.:
Capacitary inequalities for fractional integrals, with applications to differential equations and SObolev multipliers. Ark. Mat. 33 (1995), 81-115.
MR 1340271
[Sa-Wh] Sawyer E., Wheeden R.:
Weighted inequalities for fractional integrals on euclidean and homogeneous spaces. Amer. J. Math. 114 (1992), 813-874.
MR 1175693 |
Zbl 0783.42011