[1] Bandt C., Keller K.:
Self-similar sets 2. A simple approach to the topological structure of fractals. Math. Nachr. 145 (1991), 27-39.
MR 1138368 |
Zbl 0824.28007
[2] Bandt C., Keller K.:
Symbolic dynamics for angle-doubling on the circle, I. The topology of locally connected Julia sets. in: Ergodic Theory and Related Topics (U. Krengel, K. Richter, V. Warstat, eds.), Lecture Notes in Math. 1514, Springer, 1992, pp.1-23.
MR 1179168 |
Zbl 0768.58013
[3] Bandt C., Keller K.:
Symbolic dynamics for angle-doubling on the circle, II. Symbolic description of the abstract Mandelbrot set. Nonlinearity 6 (1993), 377-392.
MR 1223739 |
Zbl 0785.58021
[5] Branner B.:
The Mandelbrot set. Proc. Symp. Appl. Math. 39 (1989), 75-105.
MR 1010237
[7] Douady A.:
Descriptions of compact sets in $C$. in: Topological Methods in Modern Mathematics, Publish or Perish 1993, pp.429-465.
MR 1215973
[8] Douady A., Hubbard J.:
Étude dynamique des polynômes complexes. Publications Mathématiques d'Orsay 84-02 (1984) (première partie) and 85-02 (1985) (deuxième partie).
Zbl 0571.30026
[9] Douady A., Hubbard J.:
On the dynamics of polynomial-like mappings. Ann. Sci. Ecole Norm. Sup. (4) 18 (1985), 287-343.
MR 0816367 |
Zbl 0587.30028
[10] Goldberg L., Milnor J.:
Fixed points of polynomial maps I/II. Ann. Scient. Ec. Norm. Sup., $4^e$ série, t.25/26 (1992/1993).
MR 1209913
[11] Hubbard J.H.:
Local connectivity of Julia sets and bifurcation loci: Three Theorems of J.-C. Yoccoz. in: Topological Methods in Modern Mathematics, Publish or Perish 1993, pp.467-511.
MR 1215974 |
Zbl 0797.58049
[12] Keller K.:
The abstract Mandelbrot set - an atlas of abstract Julia sets. in: Topology, Measures, and Fractals (C. Bandt, J. Flachsmeyer, H. Haase, eds.), Akademie Verlag, Berlin, 1992, pp.76-81.
MR 1226281 |
Zbl 0795.58032
[13] Keller K.:
Symbolic dynamics for angle-doubling on the circle, III. Sturmian sequences and the quadratic map. Ergod. Th. and Dynam. Sys. 14 (1994), 787-805.
MR 1304142 |
Zbl 0830.58011
[14] Keller K.:
Symbolic dynamics for angle-doubling on the circle, IV. Equivalence of abstract Julia sets. Atti del Seminario dell'Universita de Modenà XLII (1994), 301-321.
MR 1310452 |
Zbl 0830.58012
[15] Keller K.: Invarante Faktoren, Juliaäquivalenzen und die abstrakte Mandelbrotmenge. Habilitationsschrift, Universität Greifswald, 1996.
[16] Keller K.:
Julia equivalences and abstract Siegel disks. submitted.
Zbl 0945.30024
[17] Lau E., Schleicher D.: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Stony Brook IMS preprint, 1994/19.
[18] Lavaurs P.:
Une déscription combinatoire de l'involution définie par M sur les rationnels à dénominateur impair. C.R. Acad. Sc. Paris Série I, t.303 (1986), 143-146.
MR 0853606 |
Zbl 0663.58018
[19] Lyubich M.Yu.: Geometry of quadratic polynomials: Moduli, rigidity, and local connectivity. Stony Brook IMS preprint 1993/9.
[20] Milnor J.:
Dynamics on one complex variable: Introductory Lectures. preprint, Stony Brook, 1990.
MR 1721240
[21] Milnor J.:
Local Connectivity of Julia sets: Expository Lectures. preprint, Stony Brook, 1992.
MR 1765085 |
Zbl 1107.37305
[22] Milnor J.:
Errata for `Local Connectivity of Julia sets: Expository Lectures'. preprint, Stony Brook, 1992.
MR 1765085
[23] Milnor J.:
Periodic orbits, external rays and the Mandelbrot set; An expository account. preprint 1995, Lecture Notes in Mathematics 1342 (1988), 465-563.
MR 1755445
[24] McMullen C.:
Complex Dynamics and Renormalization. Annals of Mathematics Studies, Princeton University Press, Princeton, 1994.
MR 1312365 |
Zbl 0822.30002
[25] McMullen C.:
Frontiers in complex dynamics. Bull. Amer. Math. Soc. (N.S.) 31 (1994), 155-172.
MR 1260523 |
Zbl 0807.30013
[26] Penrose C.S.: On quotients of the shift associated with dendrite Julia sets of quadratic polynomials. PhD thesis, University of Warwick, 1990.
[27] Penrose C.S.: Quotients of the shift associated with dendrite Julia sets. preprint, London, 1994.
[28] Schleicher D.: Internal Addresses in the Mandelbrot set and irreducibility of polynomials. PhD thesis, Cornell University, 1994.
[29] Schleicher D.: The structure of the Mandelbrot set. preprint, München, 1995.
[30] Schleicher D.: The dynamics of iterated polynomials. in preparation.
[32] Thurston W.P.: On the combinatorics and dynamics of iterated rational maps. preprint, Princeton, 1985.