Previous |  Up |  Next

Article

Keywords:
confluent; dendrite; dendroid; homeomorphism; homogeneous; mapping; mo\-no\-tone; order of a point; ramification; standard; universal
Summary:
Sufficient as well as necessary conditions are studied for a dendrite or a dendroid to be homogeneous with respect to monotone mappings. The obtained results extend ones due to H. Kato and the first named author. A number of open problems are asked.
References:
[1] Charatonik J.J.: The property of Kelley and confluent mappings. Bull. Polish Acad. Sci. Math. 31 (1983), 375-380. MR 0756917 | Zbl 0544.54028
[2] Charatonik J.J.: Generalized homogeneity of curves and a question of H. Kato. Bull. Polish Acad. Sci. Math. 36 (1988), 409-411. MR 1101430 | Zbl 0767.54030
[3] Charatonik J.J.: Monotone mappings of universal dendrites. Topology Appl. 38 (1991), 163-187. MR 1094549 | Zbl 0726.54012
[4] Charatonik J.J., Charatonik W.J., Prajs J.R.: Mapping hierarchy for dendrites. Dissertationes Math. (Rozprawy Mat.) 333 (1994), 1-52. MR 1279238 | Zbl 0822.54009
[5] Charatonik J.J., Eberhart C.: On smooth dendroids. Fund. Math. 67 (1970), 297-322. MR 0275372 | Zbl 0192.60002
[6] Charatonik W.J., Dilks A.: On self-homeomorphic spaces. Topology Appl. 55 (1994), 215-238. MR 1259506 | Zbl 0788.54040
[7] Cook H., Ingram W.T., Kuperberg K.T., Lelek A., Minc P. (editors): Continua, with the Houston problem book. M. Dekker, 1995. MR 1326830
[8] Czuba S.T.: On dendroids with Kelley's property. Proc. Amer. Math. Soc. 102 (1988), 728-730. MR 0929011 | Zbl 0648.54030
[9] Eberhart C., Fugate J.B., Gordh G.R., Jr.: Branchpoint covering theorems for confluent and weakly confluent maps. Proc. Amer. Math. Soc. 55 (1976), 409-415. MR 0410703 | Zbl 0335.54010
[10] Goodkyoontz J.T., Jr.: Some functions on hyperspaces of hereditarily unicoherent continua. Fund. Math. 95 (1977), 1-10. MR 0436097
[11] Gordh G.R., Jr., Lum L.: Monotone retracts and some characterizations of dendrites. Proc. Amer. Math. Soc. 59 (1976), 156-158. MR 0423317 | Zbl 0304.54034
[12] Kato H.: Generalized homogeneity of continua and a question of J.J. Charatonik. Houston J. Math. 13 (1987), 51-63. MR 0884233 | Zbl 0635.54017
[13] Kato H.: On problems of H. Cook. Topology Appl. 26 (1987), 219-228. MR 0904468 | Zbl 0612.54042
[14] Kuratowski K.: Topology, vol. II. Academic Press and PWN, 1968. MR 0259835
[15] Lum L.: A characterization of local connectivity in dendroids. in: Studies in Topology, Academic Press, 1975, pp.331-338. MR 0358739 | Zbl 0306.54050
[16] Maćkowiak T.: Semi-confluent mappings and their invariants. Fund. Math. 69 (1973), 251-264. MR 0321044
[17] Maćkowiak T.: Continuous mappings on continua. Dissertationes Math. (Rozprawy Mat.) 158 (1979), 1-91. MR 0522934
[18] Mazurkiewicz S.: Sur les continus homogènes. Fund. Math. 5 (1924), 137-146.
[19] Nikiel J.: A characterization of dendroids with uncountably many endpoints in the classical sense. Houston J. Math. 9 (1983), 421-432. MR 0719101
[20] Nikiel J.: On Gehman dendroids. Glasnik Mat. 20 (40) (1985), 203-214. MR 0818624 | Zbl 0684.54021
[21] Whyburn G.T.: Analytic topology. Amer. Math. Soc., 1942. MR 0007095 | Zbl 0117.15804
Partner of
EuDML logo