Article
Keywords:
Lipschitz function; G\^ateaux differentiability; uniformly G\^ateaux differentiable; bump function; Banach-Mazur game; $\sigma$-porous set
Summary:
We improve a theorem of P.G. Georgiev and N.P. Zlateva on G\^ateaux differentiability of Lipschitz functions in a Banach space which admits a Lipschitz uniformly G\^ateaux differentiable bump function. In particular, our result implies the following theorem: If $d$ is a distance function determined by a closed subset $A$ of a Banach space $X$ with a uniformly G\^ateaux differentiable norm, then the set of points of $X\setminus A$ at which $d$ is not G\^ateaux differentiable is not only a first category set, but it is even $\sigma$-porous in a rather strong sense.
References:
[1] Deville R., Godefroy G., Zizler V.:
Smoothness and Renorming in Banach Spaces. Pitman Monographs 64, Longman Essex (1993).
MR 1211634
[2] Fabian M., Zhivkov N.V.:
A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg. C.R. Acad. Sci. Bulg. 38 (1985), 671-674.
MR 0805439 |
Zbl 0577.46012
[3] Georgiev P.G.:
Submonotone mappings in Banach spaces and differentiability of non-convex functions. C.R. Acad. Sci. Bulg. 42 (1989), 13-16.
MR 1020610 |
Zbl 0715.49016
[4] Georgiev P.G.:
The smooth variational principle and generic differentiability. Bull. Austral. Math. Soc. 43 (1991), 169-175.
MR 1086731 |
Zbl 0717.49014
[6] Georgiev P.G., Zlateva N.P.: An application of the smooth variational principle to generic Gâteaux differentiability. preprint.
[7] Zajíček L.:
Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space. Czechoslovak Math. J. 33(108) (1983), 292-308.
MR 0699027
[8] Zajíček L.:
A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions. Suppl. Rend. Circ. Mat. di Palermo, Ser. II 3 (1984), 403-410.
MR 0744405
[9] Zajíček L.: A note on $\sigma$-porous sets. Real Analysis Exchange 17 (1991-92), p.18.
[10] Zajíček L.:
Products of non-$\sigma$-porous sets and Foran systems. submitted to Atti Sem. Mat. Fis. Univ. Modena.
MR 1428780
[11] Zelený M.:
The Banach-Mazur game and $\sigma$-porosity. Fund. Math. 150 (1996), 197-210.
MR 1405042
[12] Zhivkov N.V.:
Generic Gâteaux differentiability of directionally differentiable mappings. Rev. Roumaine Math. Pures Appl. 32 (1987), 179-188.
MR 0889011 |
Zbl 0628.46044
[13] Wee-Kee Tang:
Uniformly differentiable bump functions. preprint.
MR 1421846