Previous |  Up |  Next

Article

Keywords:
periodic; existence; Landesman Lazer
Summary:
Existence of nonnegative solutions are established for the periodic problem $y'=f(t,y)$ a.e\. on $[0,T]$, $y(0)=y(T)$. Here the nonlinearity $f$ satisfies a Landesman Lazer type condition.
References:
[1] Fonda A., Mawhin J.: Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations. Proc. Royal Soc. Edinburgh 112A (1989), 145-153. MR 1007541 | Zbl 0677.34022
[2] Frigon M., O'Regan D.: Existence results for first order impulsive differential equations. J. Math. Anal. Appl. 193 (1995), 96-113. MR 1338502 | Zbl 0853.34011
[3] Granas A., Guenther R.B., Lee J.W.: Some general existence principles in the Carathéodory theory of nonlinear differential systems. J. Math. Pures et Appl. 70 (1991), 153-196. MR 1103033 | Zbl 0687.34009
[4] Mawhin J.: Topological degree methods in nonlinear boundary value problems. AMS Regional Conf. Series in Math., 40, Providence, 1979. MR 0525202 | Zbl 0414.34025
[5] Mawhin J., Ward J.R.: Periodic solutions of some forced Liénard differential equations at resonance. Arch. Math. 41 (1983), 337-351. MR 0731606 | Zbl 0537.34037
[6] Nkashama M.N.: A generalized upper and lower solutions method and multiplicity results for nonlinear first order ordinary differential equations. J. Math. Anal. Appl. 140 (1989), 381-395. MR 1001864 | Zbl 0674.34009
[7] Nkashama M.N., Santanilla J.: Existence of multiple solutions for some nonlinear boundary value problems. J. Diff. Eqns. 84 (1990), 148-164. MR 1042663 | Zbl 0693.34011
[8] O'Regan D.: Theory of Singular Boundary Value Problems. World Scientific Press, Singapore, 1994. MR 1286741 | Zbl 0807.34028
[9] Yosida K.: Functional Analysis. Springer Verlag, Berlin, 1980. MR 0617913 | Zbl 0830.46001
Partner of
EuDML logo