Article
Keywords:
periodic; existence; Landesman Lazer
Summary:
Existence of nonnegative solutions are established for the periodic problem $y'=f(t,y)$ a.e\. on $[0,T]$, $y(0)=y(T)$. Here the nonlinearity $f$ satisfies a Landesman Lazer type condition.
References:
[1] Fonda A., Mawhin J.:
Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations. Proc. Royal Soc. Edinburgh 112A (1989), 145-153.
MR 1007541 |
Zbl 0677.34022
[2] Frigon M., O'Regan D.:
Existence results for first order impulsive differential equations. J. Math. Anal. Appl. 193 (1995), 96-113.
MR 1338502 |
Zbl 0853.34011
[3] Granas A., Guenther R.B., Lee J.W.:
Some general existence principles in the Carathéodory theory of nonlinear differential systems. J. Math. Pures et Appl. 70 (1991), 153-196.
MR 1103033 |
Zbl 0687.34009
[4] Mawhin J.:
Topological degree methods in nonlinear boundary value problems. AMS Regional Conf. Series in Math., 40, Providence, 1979.
MR 0525202 |
Zbl 0414.34025
[5] Mawhin J., Ward J.R.:
Periodic solutions of some forced Liénard differential equations at resonance. Arch. Math. 41 (1983), 337-351.
MR 0731606 |
Zbl 0537.34037
[6] Nkashama M.N.:
A generalized upper and lower solutions method and multiplicity results for nonlinear first order ordinary differential equations. J. Math. Anal. Appl. 140 (1989), 381-395.
MR 1001864 |
Zbl 0674.34009
[7] Nkashama M.N., Santanilla J.:
Existence of multiple solutions for some nonlinear boundary value problems. J. Diff. Eqns. 84 (1990), 148-164.
MR 1042663 |
Zbl 0693.34011
[8] O'Regan D.:
Theory of Singular Boundary Value Problems. World Scientific Press, Singapore, 1994.
MR 1286741 |
Zbl 0807.34028