Previous |  Up |  Next

Article

Keywords:
antiproximinal sets; best approximation
Summary:
If $X$ is a Banach space then the Banach space $c(X)$ of all $X$-valued convergent sequences contains a nonvoid bounded closed convex body $V$ such that no point in $C(X)\setminus V$ has a nearest point in $V$.
References:
[1] Chakalov V.L.: Extremal elements in some normed spaces. Comptes Rendus Acad. Bulgare des Sciences 36 (1983), 173-176. MR 0709005
[2] Cobzaş S.: Very non-proximinal sets in $c_0$ (in Romanian). Rev. Anal. Numer. Teoria Approx. 2 (1973), 137-141. MR 0393980
[3] Cobzaş S.: Antiproximinal sets in some Banach spaces. Math. Balkanica 4 (1974), 79-82. MR 0377381
[4] Cobzaş S.: Convex antiproximinal sets in the spaces $c_0$ and $c$ (in Russian). Matem. Zametki 17 (1975), 449-457. MR 0407567
[5] Cobzaş S.: Antiproximinal sets in Banach spaces of continuous functions. Anal. Numér. Théorie Approx. 5 (1976), 127-143. MR 0477577
[6] Cobzaş S.: Antiproximinal sets in Banach spaces of $c_0$-type. Rev. Anal. Numér. Théorie Approx. 7 (1978), 141-145. MR 0530744
[7] Cobzaş S.: Support functionals of the unit ball in Banach spaces of bounded functions. Seminar on Mathematical Analysis, Babeş-Bolyai University Research Seminaries, Preprint nr. 4, pp.85-90, Cluj-Napoca, 1986.
[8] Dunford N., Schwartz J.T.: Linear Operators I. General Theory. Interscience, New York, 1958. MR 0117523 | Zbl 0084.10402
[9] Edelstein M., Thompson A.C.: Some results on nearest points and support properties of convex sets in $c_0$. Pacific J. Math. 40 (1972), 553-560. MR 0308741
[10] Fonf V.P.: On antiproximinal sets in spaces of continuous functions on compacta (in Russian). Matem. Zametki 33 (1983), 549-558. MR 0704442
[11] Fonf V.P.: On strongly antiproximinal sets in Banach spaces (in Russian). Matem. Zametki 47 (1990), 130-136. MR 1048552
[12] Holmes R.B.: Geometric Functional Analysis and its Applications. Springer Verlag, BerlinHeidelberg-New York, 1975. MR 0410335 | Zbl 0336.46001
[13] Klee V.: Remarks on nearest points in normed linear spaces. Proc. Colloq. Convexity, Copenhagen 1965, pp.161-176, Copenhagen, 1967. MR 0223859 | Zbl 0156.36303
[14] Phelps R.R.: Subreflexive normed linear spaces. Archiv der Math. 8 (1957), 444-450. MR 0099588
[15] Phelps R.R.: Some subreflexive Banach spaces. Archiv der Math. 10 (1959), 162-169. MR 0107162 | Zbl 0087.10704
[16] Sierpinski W.: Cardinal and Ordinal Numbers. Warszawa, 1965. MR 0194339 | Zbl 0131.24801
[17] Singer I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Editura Academiei and Springer Verlag, Bucharest-Berlin, 1970. MR 0270044 | Zbl 0197.38601
[18] Stečkin S.B.: On the approximation properties of sets in normed linear spaces (in Russian). Rev. Math. Pures et Appl. 8 (1963), 5-18. MR 0155168
[19] Zukhovickij S.I.: On minimal extensions of linear functionals in spaces of continuous functions (in Russian). Izvestija Akad. Nauk SSSR, ser. matem. 21 (1957), 409-422. MR 0088702
[20] Werner D.: Funktionalanalysis. Springer Verlag, Berlin-Heidelberg-New York, 1995. MR 1787146 | Zbl 1161.46001
Partner of
EuDML logo