Article
Keywords:
prime ring; semiprime ring; extended centroid; derivation; Jordan derivation; left (right) centralizer; Jordan left (right) centralizer; commuting mapping; centralizing mapping
Summary:
The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let $R$ be a noncommutative prime ring of characteristic different from two and let $S$ and $T$ be left centralizers on $R$. Suppose that $[S(x),T(x)]S(x)+S(x)[S(x),T(x)]=0$ is fulfilled for all $x\in R$. If $S\neq 0$ $(T\neq 0)$ then there exists $\lambda $ from the extended centroid of $R$ such that $T=\lambda S$ $(S=\lambda T)$.
References:
[1] Brešar M., Vukman J.:
Jordan derivations on prime rings. Bull. Austral. Math. Soc. 37 (1988), 321-323.
MR 0943433
[2] Brešar M.:
Jordan derivations on prime rings. Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
MR 0929422
[3] Brešar M.:
On a generalization of the notion of centralizing mappings. Proc. Amer. Math. Soc. 114 (1992), 641-649.
MR 1072330
[4] Brešar M.:
Centralizing mappings and derivations in prime rings. Journal of Algebra 156 (1993), 385-394.
MR 1216475
[5] Brešar M.:
Commuting traces of biaditive mappings, commutativity-preserving mappings and Lie mappings. Trans. Amer. Math. Soc. 335 (1993), 525-545.
MR 1069746
[6] Cusak J.:
Jordan derivations on rings. Proc. Amer. Math. Soc. 53 (1975), 321-324.
MR 0399182
[7] Herstein I.N.:
Jordan derivations on prime rings. Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
MR 0095864
[9] Martindale W.S.:
Prime rings satisfying a generalized polynomial identity. Journal of Algebra 12 (1969), 576-584.
MR 0238897 |
Zbl 0175.03102
[10] Posner E.:
Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
MR 0095863
[11] Zalar B.:
On centralizers of semiprime rings. Comment. Math. Univ. Carolinae 32 (1991), 609-614.
MR 1159807 |
Zbl 0746.16011