[1] Alliprantis C., Brown D., Burkinshaw O.: Existence and Optimality of Competitive Equilibria. Springer-Verlag, Berlin, 1988.
[2] Arrow K., Kurz M.: Public Investment, The Rate of Return and Optimal Fisical Policy. The John's Hopkins Press, Baltimore, Maryland, 1970.
[5] Buttazzo G.:
Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics, Vol. 207, Longman Scientific and Technical, Harlow, Essex, U.K., 1989.
MR 1020296 |
Zbl 0669.49005
[7] Diestel J., Uhl J.J.:
Vector Measures. Math. Surveys, Vol. 15, AMS, Providence, Rhode Island, 1977.
MR 0453964 |
Zbl 0521.46035
[9] Evstigneev I.:
Optimal stochastic programs and their stimulating prices. in: Mathematics Models in Economics, eds. J. Los, M. Los, North Holland, Amsterdam, 1974, pp. 219-252.
MR 0381650 |
Zbl 0291.90048
[10] Kravvaritis D., Papageorgiou N.S.:
Sensitivity analysis of a discrete time multisector growth model with uncertainty. Stochastic Models 9 (1993), 158-178.
MR 1213065 |
Zbl 0806.90015
[11] Papageorgiou N.S.:
Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442.
MR 0896595 |
Zbl 0619.28009
[12] Papageorgiou N.S.:
Optimal programs and their price characterization in a multisector growth model with uncertainty. Proc. Amer. Math. Soc. 22 (1994), 227-240.
MR 1195728 |
Zbl 0839.90019
[13] Peleg B., Ryder H.: On optimal consumption plans in a multisector economy. Review of Economic Studies 39 (1972), 159-169.
[14] Taksar M.I.:
Optimal planning over infinite time interval under random factors. in: Mathematical Models in Economics, eds. J. Los, M. Los, North Holland, Amsterdam, 1974, pp. 284-298.
MR 0401104
[15] Weitzman M.L.:
Duality theory for infinite horizon convex models. Management Sci. 19 (1973), 783-789.
MR 0337334 |
Zbl 0262.90052