Previous |  Up |  Next

Article

Keywords:
sequentially continuous linear map; topological linear space; product space
Summary:
Topological linear spaces having the property that some sequentially continuous linear maps on them are continuous, are investigated. It is shown that such properties (and close ones, e.g., bornological-like properties) are closed under large products.
References:
[1] Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories. Wiley Interscience, New York, 1990. MR 1051419
[2] Dierolf P., Dierolf S.: On linear topologies determined by a family of subsets of a topological vector spaces. Gen. Top. and its Appl. 8 (1978), 127-140. MR 0473867
[3] Dudley R.M.: On sequential convergence. Trans. Amer. Math. Soc. 112 (1964), 483-507. MR 0175081 | Zbl 0138.17401
[4] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[5] Hušek M.: Sequentially continuous homomorphisms on products of topological groups. Top. & Appl. 70 (1996), 155-165. MR 1397074
[6] Isbell J.R.: Mazur's theorem. Proc. Top. Symp. Prague 1961 (Academia Prague 1962), pp.221-225. MR 0146640 | Zbl 0116.31803
[7] Isbell J.R., Thomas E.S., Jr.: Mazur's theorem on sequentially continuous linear functionals. Proc. Amer. Math. Soc. 14 (1963), 644-647. MR 0151833 | Zbl 0116.31803
[8] Jarchow H.: Locally Convex Spaces. Teubner, Stuttgart, 1981. MR 0632257 | Zbl 0466.46001
[9] Mazur S.: Sur la structure des fonctionelles linéaires dans certains espaces $(\Cal L)$. Ann. Soc. Polon. Math. 19 (1946), 241.
[10] Mazur S.: On continuous mappings on cartesian products. Fund. Math. 39 (1952), 229-238. MR 0055663
[11] Mrówka S.: On the form of certain functionals. Bull. Acad. Polon. Sci. Ser. Math. 5 (1957), 1061-1067. MR 0092111
[12] Mrówka S.: On the form of pointwise continuous linear positive functionals and isomorphisms of function spaces. Studia Math. 21 (1961), 1-14. MR 0138992
[13] Snipes R.F.: C-sequential and S-bornological spaces. Math. Ann. 202 (1973), 273-283. MR 0330993
[14] Sydow W.: Über die Kategorie der topologischen Vektorräume. Doktor-Dissertation (Fernuniversität Hagen, 1980). Zbl 0466.18006
[15] Wilansky A.: Modern Methods in Topological Vector Spaces. McGraw-Hill, 1978. MR 0518316 | Zbl 0395.46001
Partner of
EuDML logo