Previous |  Up |  Next

Article

Keywords:
Boolean algebra; subalgebra lattice; metrizability
Summary:
We prove that a Boolean algebra is countable iff its subalgebra lattice admits a continuous complementation.
References:
[1] Bonnet R.: Subalgebras. Chapter 10 in vol. 2 of: J. D. Monk (ed.) {Handbook of Boolean algebras}, North-Holland, Amsterdam, 1989. MR 0991598
[2] Engelking R.: General Topology. PWN, Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[3] Gruenhage G.: Covering properties on $X^2\setminus \Delta$, W-sets, and compact subsets of $\Sigma$-products. Topology and its Applications 17 (1978), 287-304. MR 0752278
[4] Jech T.: A note on countable Boolean algebras. Algebra Universalis 14 (1982), 257-262. MR 0635004 | Zbl 0488.06007
[5] Koppelberg S.: General theory of Boolean algebras. vol 1. of: J. D. Monk (ed.) {Handbook of Boolean algebras}, North-Holland, Amsterdam, 1989. MR 0991565
[6] Remmel J.B.: Complementation in the lattice of subalgebras of a Boolean algebra. Algebra Universalis 10 (1980), 48-64. MR 0552156 | Zbl 0432.06010
Partner of
EuDML logo