Article
Keywords:
heat equation; parabolic function; Weierstrass kernel; set of determination; Harnack inequality; coparabolic thinness; coparabolic minimal thinness; heat ball
Summary:
Let $T$ be a positive number or $+\infty$. We characterize all subsets $M$ of $\Bbb R^n \times ]0,T[ $ such that $$ \inf\limits_{X\in \Bbb R^n \times ]0,T[}u(X) = \inf\limits_{X\in M}u(X) \tag{i} $$ for every positive parabolic function $u$ on $\Bbb R^n \times ]0,T[$ in terms of coparabolic (minimal) thinness of the set $M_\delta =\cup_{(x,t)\in M} B^p((x,t),\delta t)$, where $\delta \in (0,1)$ and $B^p((x,t),r)$ is the ``heat ball'' with the ``center'' $(x,t)$ and radius $r$. Examples of different types of sets which can be used instead of ``heat balls'' are given. It is proved that (i) is equivalent to the condition $ \sup_{X\in \Bbb R^n \times \Bbb R^+}u(X) = \sup_{X\in M}u(X) $ for every bounded parabolic function on $\Bbb R^n \times \Bbb R^+$ and hence to all equivalent conditions given in the article [7]. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References.
References:
[1] Aikawa H.:
Sets of determination for harmonic function in an NTA domains. J. Math. Soc. Japan, to appear.
MR 1376083
[2] Bonsall F.F.:
Domination of the supremum of a bounded harmonic function by its supremum over a countable subset. Proc. Edinburgh Math. Soc. 30 (1987), 441-477.
MR 0908454 |
Zbl 0658.31001
[3] Brzezina M.:
On the base and the essential base in parabolic potential theory. Czechoslovak Math. J. 40 (115) (1990), 87-103.
MR 1032362 |
Zbl 0712.31001
[4] Doob J.L.:
Classical Potential Theory and Its Probabilistic Counterpart. Springer-Verlag New York (1984).
MR 0731258 |
Zbl 0549.31001
[5] Gardiner S.J.:
Sets of determination for harmonic function. Trans. Amer. Math. Soc. 338.1 (1993), 233-243.
MR 1100694
[6] Moser J.:
A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. XVII (1964), 101-134.
MR 0159139 |
Zbl 0149.06902
[7] Ranošová J.:
Sets of determination for parabolic functions on a half-space. Comment. Math. Univ. Carolinae 35 (1994), 497-513.
MR 1307276
[8] Watson A.N.:
Thermal capacity. Proc. London Math. Soc. 37.3 (1987), 342-362.
MR 0507610