Previous |  Up |  Next

Article

Keywords:
capacities; large deviations; Choquet integral; Varadhan's integration theorem
Summary:
Varadhan's integration theorem, one of the corner stones of large-deviation theory, is generalized to the context of capacities. The theorem appears valid for any integral that obeys four linearity properties. We introduce a collection of integrals that have these properties. Of one of them, known as the Choquet integral, some continuity properties are established as well.
References:
Berg C., Christensen J.P.R., Ressel P.: Harmonic Analysis on Semigroups. Springer, New York. MR 0747302 | Zbl 0619.43001
Billingsley P.: Convergence of Probability Measures. John Wiley & Sons, New York. MR 1700749 | Zbl 0944.60003
Choquet G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5 (1954), 131-295. MR 0080760 | Zbl 0064.35101
Deheuvels P.: Large deviations for rocket plumes. to appear in Statist. Nederlandica.
Dellacherie C., Meyer P.-A.: Probabilities and Potential. North Holland, Amsterdam. Zbl 0716.60001
Deuschel J.-D., Stroock D.W.: Large Deviations. Academic Press, Boston. Zbl 0791.60017
Gerritse B.: Large Deviations. Thesis, Katholieke Universiteit Nijmegen, the Netherlands.
Gerritse B.: Compact-open convergence of sequences. in Large Deviations, pp. 53-69.
Gerritse B.: The mixing theorem. in Large Deviations, pp. 70-79.
Holwerda H.: Topology and Order: some investigations motivated by Probability Theory. Thesis, Katholieke Universiteit Nijmegen, the Netherlands.
Holwerda H., Vervaat W.: Order and topology in spaces of capacities. in Topology and Order: some investigations motivated by Probability Theory, pp. 45-64.
Norberg T.: Random capacities and their distributions. Probab. Theory Related Fields 73 (1986), 281-297. MR 0855227 | Zbl 0581.60042
Norberg T., Vervaat W.: Capacities on non-Hausdorff spaces. Technical Report 1989-11, Dept. of Math., Chalmers Univ. of Techn. of Göteborg, Sweden; to appear in Vervaat 1995. MR 1465485 | Zbl 0883.28002
O'Brien G.L.: Sequences of capacities and their role in large deviation theory. Technical Report 92-16, Dept. of Math. & Stat., York Univ., Toronto; to appear in J. of Theoret. Probab.
O'Brien G.L.: Unilateral limits for capacities. Research notes.
O'Brien G.L., Vervaat W.: Capacities, large deviations and loglog laws. in S. Cambanis, G. Samorodnitsky & M.S. Taqqu (Eds.), Stable Processes, Birkhäuser, Boston, pp. 43-83. MR 1119351
O'Brien G.L., Vervaat W.: Compactness in the theory of large deviations. Technical Report 93-23, Dept. of Math. & Stat., York Univ., Toronto; to appear in Stochastic Process. Appl. MR 1327949 | Zbl 0824.60019
O'Brien G.L., Vervaat W.: How subadditive are subadditive capacities?. Comment. Math. Univ. Carolinae 35 (1994), 311-324. MR 1286578 | Zbl 0808.28001
Varadhan S.R.S.: Asymptotic probabilities and differential equations. Comm. Pure Appl. Math. 19 (1966), 261-286. MR 0203230 | Zbl 0147.15503
Varadhan S.R.S.: Large Deviations and Applications. SIAM, Philadelphia. MR 0758258 | Zbl 0661.60040
Vervaat W.: Random upper semicontinuous functions and extremal processes. Technical Report MS-R8801, Centrum voor Wisk. en Inf., Amsterdam; to appear in Vervaat 1995. MR 1465481 | Zbl 0882.60003
Vervaat W. (Ed.): Probability and Lattices. Volume 110 of CWI Tracts, Centrum voor Wisk. en Inf., Amsterdam, to appear. MR 1465480 | Zbl 0865.00051
Wilker P.: Adjoint product and hom functors in general topology. Pacific J. Math. 34 (1970), 269-283. MR 0270329 | Zbl 0205.52703
Partner of
EuDML logo