Previous |  Up |  Next

Article

Keywords:
solvability; loop; group
Summary:
We investigate the situation that the inner mapping group of a loop is of order which is a product of two small prime numbers and we show that then the loop is soluble.
References:
[1] Blackburn N., Huppert B.: Finite Groups III. Springer Verlag, 1982. MR 0662826 | Zbl 0514.20002
[2] Conway J.H.: Atlas of Finite Groups. Oxford, Clarendon Press, 1985. MR 0827219 | Zbl 0568.20001
[3] Huppert B.: Endliche Gruppen I. Springer Verlag, 1967. MR 0224703 | Zbl 0412.20002
[4] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups. Arch. Math. 60 (1993), 233-236. MR 1201636
[5] Niemenmaa M.: Transversals, commutators and solvability in finite groups. Bollettino U.M.I. (7) 9-A (1995), 203-208. MR 1324621 | Zbl 0837.20026
[6] Niemenmaa M., Kepka T.: On multiplication groups of loops. J. Algebra 135 (1990), 112-122. MR 1076080 | Zbl 0706.20046
[7] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups in finite groups. Bull. London Math. Soc. 24 (1992), 343-346. MR 1165376 | Zbl 0793.20064
[8] Niemenmaa M., Vesanen A.: On subgroups, transversals and commutators. Groups Galway/St. Andrews, 1993, Vol.2, London Math. Soc. Lecture Notes Series 212, 1995, pp. 476-481. MR 1337289 | Zbl 0862.20023
[9] Vesanen A.: On connected transversals in $PSL(2,q)$. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 84, 1992. MR 1150782 | Zbl 0744.20058
[10] Vesanen A.: The group $PSL(2,q)$ is not the multiplication group of a loop. Comm. Algebra 22.4 (1994), 1177-1195. MR 1261254
[11] Vesanen A.: Solvable loops and groups. to appear in J. Algebra. MR 1379214
Partner of
EuDML logo