Previous |  Up |  Next

Article

Keywords:
ccc; non-separable; Hausdorff gap; $\pi$-character
Summary:
We answer a question of I. Juhasz by showing that MA $+ \neg$ CH does not imply that every compact ccc space of countable $\pi$-character is separable. The space constructed has the additional property that it does not map continuously onto $I^{\omega_1}$.
References:
[Ba84] Baumgartner J.E.: Applications of the Proper Forcing Axiom. Handbook of Set-Theoretic Topology, editors K.Kunen and J.Vaughan, North-Holland, 1984, pp. 913-959. MR 0776640 | Zbl 0556.03040
[Be80] Bell M.: Compact ccc non-separable spaces of small weight. Topology Proceedings 5 (1980), 11-25. MR 0624458
[Be88] Bell M: $G_\kappa$ subspaces of hyadic spaces. Proc. Amer. Math. Soc. 104 , No.2 (1988), 635-640. MR 0962841
[Be89] Bell M.: Spaces of Ideals of Partial Functions. Set Theory and its Applications, Lecture Notes in Mathematics 1401, Springer-Verlag, 1989, pp. 1-4. MR 1031761 | Zbl 0683.54013
[Fr84] Fremlin D.H.: Consequences of Martin's Axiom. Cambridge Tracts in Mathematics 84, Cambridge University Press, 1984. Zbl 1156.03050
[Ju71] Juhasz I.: Cardinal Functions in Topology. Mathematical Centre Tracts 34, Mathematisch Centrum, Amsterdam, 1971. MR 0340021 | Zbl 0479.54001
[Ju77] Juhasz I.: Consistency Results in Topology. Handbook of Mathematical Logic, editor J.Barwise, North-Holland, 1977, pp. 503-522. Zbl 0257.54003
[Sh72] Shapirovskii B.: On separability and metrizability of spaces with Souslin condition. Soviet Math. Dokl. 13 (1972), 1633-1637.
[Sh80] Shapirovskii B.: Maps onto Tikhonov cubes. Russ. Math. Surv. 35.3 (1980), 145-156.
[Sh93] Shapirovskii B. (presented by P.Nyikos and J.Vaughan): The Equivalence of Sequential Compactness and Pseudoradialness in the Class of Compact $T_2$ Spaces, Assuming CH. Papers on General Topology and Applications, Annals of the New York Academy of Sciences 704, 1993, pp. 322-327. MR 1277868
[To89] Todorcevic S.: Partition Problems in Topology. Contemporary Mathematics 84, American Mathematical Society, Providence, Rhode Island, 1989. MR 0980949 | Zbl 0659.54001
[TF95] Todorcevic S., Farah I.: Some Applications of the Method of Forcing. Yenisey Publ. Co., Moscow, 1995. MR 1486583 | Zbl 1089.03500
Partner of
EuDML logo