Previous |  Up |  Next

Article

Keywords:
oblique derivative; elliptic equation; non divergence form; $V\kern -1.2pt MO$ coefficients; strong solution
Summary:
A priori estimates and strong solvability results in Sobolev space $W^{2,p}(\Omega)$, $1<p<\infty$ are proved for the regular oblique derivative problem $$ \begin{cases} \sum_{i,j=1}^n a^{ij}(x)\frac{\partial^2u}{\partial x_i\partial x_j} =f(x) \text{ a.e. } \Omega \\ \frac{\partial u}{\partial \ell}+\sigma(x)u =\varphi(x) \text{ on } \partial \Omega \end{cases} $$ when the principal coefficients $a^{ij}$ are $V\kern -1.2pt MO\cap L^\infty$ functions.
References:
[A] Acquistapace P.: On $BMO$ regularity for linear elliptic systems. Ann. Mat. Pura Appl. 161 (1992), 231-270. MR 1174819 | Zbl 0802.35015
[ADN] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959), 623-727. MR 0125307 | Zbl 0093.10401
[AR] Adams R.: Sobolev Spaces. Academic Press, New York, 1975. MR 0450957 | Zbl 1098.46001
[B] Bramanti M.: Commutators of integral operators with positive kernels. Le Matematiche XLIX (1994), 149-168. MR 1386370 | Zbl 0840.42009
[C1] Chicco M.: Third boundary value problem in $H^{2,p}(Ømega)$ for a class of linear second order elliptic partial differential equations. Rend. Ist. Mat. Univ. Trieste 4 (1972), 85-94. MR 0348258
[C2] Chicco M.: Terzo problema al contorno per una classe di equazioni ellittiche del secondo ordine a coefficienti discontinui. Ann. Mat. Pura Appl. (4) 112 (1977), 241-259; errata, ibid. (4) 130 (1982), 399-401. MR 0435582
[CFL1] Chiarenza F., Frasca M., Longo P.: Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients. Ricerche di Mat. 60 (1991), 149-168. MR 1191890
[CFL2] Chiarenza F., Frasca M., Longo P.: $W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with $V MO$ coefficients. Trans. Amer. Math. Soc. 336 (1993), 841-853. MR 1088476 | Zbl 0818.35023
[GT] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin, 1983. MR 0737190 | Zbl 1042.35002
[JN] John F., Nirenberg L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 | Zbl 0102.04302
[L] Luo Y.: An Aleksandrov-Bakelman type maximum principle and applications. J. Diff. Equations 101 (1993), 213-231. MR 1204327 | Zbl 0812.35014
[LT] Luo Y., Trudinger N.S.: Linear second order elliptic equations with Venttsel boundary conditions. Proc. Roy. Soc. Edinburgh 118A (1991), 193-207. MR 1121663 | Zbl 0771.35014
[M] Miranda C.: Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui. Ann. Mat. Pura Appl. 63 (1963), 353-386. MR 0170090 | Zbl 0156.34001
[NF] Nicolosi F.: Il terzo problema al contorno per le equazioni lineari ellittiche a coefficienti discontinui. Rend. Circ. Mat. Palermo 33 (1984), 351-368.
[NL] Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115-162. MR 0109940 | Zbl 0088.07601
[S] Sarason D.: Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), 391-405. MR 0377518 | Zbl 0319.42006
[T] Talenti G.: Problemi di derivata obliqua per equazioni ellittiche in due variabili. Boll. Un. Mat. Ital. (3) 22 (1967), 505-526. MR 0231048 | Zbl 0156.33803
[V] Viola G.: Una stima a priori per la soluzione del terzo problema al contorno associato ad una classe di equazioni ellittiche del secondo ordine a coefficienti non regolari. Boll. Un. Mat. Ital. (6) 3-B (1984), 397-411.
Partner of
EuDML logo