Article
Keywords:
compact space; separation property; extension
Summary:
We consider the property of relative compactness of subspaces of Hausdorff spaces. Several examples of relatively compact spaces are given. We prove that the property of being a relatively compact subspace of a Hausdorff spaces is strictly stronger than being a regular space and strictly weaker than being a Tychonoff space.
References:
[AH] Arhangel'skii A.V., Hamdi M.M. Gennedi: Foundations of the theory of relative topological properties. General Topology. Spaces and mappings. MGU Moscow (1989), 3-48.
[En] Engelking R.: General Topology. (1987), PWN Warsawa.
[He] Herrlich H.:
Ordnugsfähigkeit total-diskontinuierlicher Räume. Math. Ann. 159 (1965), 77-80.
MR 0182944
[Jo] Jones F.B.:
Hereditary separable, non-completely regular spaces. Topology Conf., Virginia Polytechnic Inst. and State U. 1973, Springer Lecture Notes in Mathematics 375 (1974), 149-152.
MR 0413044
[PW] Porter J.R., Woods R.G.:
Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag (1988).
MR 0918341 |
Zbl 0652.54016
[Ra] Ranchin D.B.:
On compactness modulo ideal. DAN SSSR (1972), 202 761-764.
MR 0296899